Skip to main content
NIH Clinical Center
  Home | Contact Us | Site Map | Search
About the Clinical Center
For Researchers and Physicians
Participate in Clinical Studies

Back to: About the Clinical Center > Departments and Services > Radiology & Imaging Sciences Home > Radiology > Interventional Radiology > Interventional Radiology Lab
Radiology and Imaging Sciences
Interventional Radiology Lab Background

Quick Links

Diagnosis and therapy remain distinctly separated from each other in time and space. The gap between diagnosis and therapy can be closed by minimally invasive image guided therapies. Real-time, intra-procedural tools will blend diagnosis and therapy into a dynamic, iterative process with improved outcomes. The redefining of surgical-like procedures will be fueled by multi-modality imaging, navigation, visualization, robotics, and automated precision tools. These enabling technologies have not yet been optimally applied to existing clinical problems, especially in minimally-invasive image-guided therapies. This presents an opportunity to integrate these technologies into the clinical setting in a validated and cost-effective manner, and to study the impact prior to broad implementation.

CT scan full viewImage guidance and multimodality navigation will fuel a small revolution in procedural medicine, which presents unprecedented opportunity and challenge. Image guidance and minimally invasive approaches have revolutionized the management of many common diseases. The miniaturization of surgical interventions has seen the broad adoption of needle or catheter-based procedures such as tumor embolization, brain aneurysm coiling, aortic stent grafting, uterine fibroid embolization, atherosclerosis stenting and angioplasty, and tumor thermal ablation with radiofrequency. As procedures are becoming less and less invasive, they are more and more targeted and guided by imaging and spatial information. The ability to navigate a medical device to a target based upon multiple windows or multiple modalities should have tremendous advantages in certain settings. The combination of functional and morphologic (metabolic and anatomic) information on the same coordinate system is empowering.

CT scan with tools hanging from the CT tower 
including CT integrated robotics for 
point-and-click needle insertions

CT scan with tools hanging from the CT tower
including CT integrated robotics for
point-and-click needle insertions.

With multiple public and private partners, we have developed a multimodality interventional radiology suite that uses a CT coordinate frame to co-register different devices including pre-procedural images, intra-procedural ultrasound, gamma scintigraphy, CT, rotational fluoroscopy, robotics, electromagnetic tracking and therapeutic ultrasound, microwave, radiofrequency, etc., to allow the best combinations of techniques and guidance methods tailored to the particular patient’s needs. Combining imaging modalities can take advantage of each modality’s strength. Real-time feedback and temporal resolution of ultrasound can be combined with the functional and metabolic data from PET and the spatial resolution of MR or CT, all on one seamless platform for treatment planning, targeting, procedural navigation, monitoring, and verification of treatment.


This page last reviewed on 01/21/10



National Institutes
of Health
  Department of Health
and Human Services
 
NIH Clinical Center National Institutes of Health