Department of Laboratory Medicine

Zhigang Li Curriculum Vitae

Zhigang Li is the Research Specialist.

Place of Birth

Shanghai, China

Education

Graduate of East China Institute of Chemical Technology

Employment

  • 2011-Present Research Specialist, National Institutes of Health
  • 2000-2010 Research Specialist, Brigham and Women’s Hospital, Boston, MA
  • 1995-2000 Research Associate, Brigham and Women’s Hospital, Boston, MA
  • 1933-1995 Research Fellow, Deaconess Hospital, Harvard Medical School, Boston, MA
  • 1986-1993 Research Associate, Boston Biomedical Research Institute, Boston, MA
  • 1982-1986 Research Assistant, Shanghai Institute of Plant Physiology, Academica Sinica, Shanghai, China

Selected Publications

Research Investigations

  • Hedman AC, Li Z, Gorissse L, Parvathaneni S, Morgan CJ, Sacks DB. IQGAP1 binds AMPK and is required for maximum AMPK activation. J Biol Chem 2021, in the press.
  • Hedman AC, McNulty DE, Li Z, Gorisse L, Annan RS, Sacks DB. Tyrosine phosphorylation of the scaffold protein IQGAP1 in the MET pathway alters function. J Biol Chem 2020; 295:18105-18121.
  • Gorisse L, Li Z, Wagner CD, Worthylake DK, Zappacosta F, Hedman AC, Annan RS, Sacks DB. Ubiquitination of the scaffold protein IQGAP1 diminishes its interaction with and activation of the Rho GTPase CDC42. J Biol Chem 2020; 295:4822-4835.
  • Morgan CJ, Hedman AC, Li Z, Sacks DB. Endogenous IQGAP1 and IQGAP3 do not functionally interact with Ras. Sci Rep. 2019 Jul 30;9(1):11057. doi: 10.1038/s41598-019-46677-9..
  • Zhang M, Li Z, Jang H, Hedman AC, Sacks DB, Nussinov R. Ca2+-dependent switch of calmodulin interaction mode with tandem IQ motifs in the scaffolding protein IQGAP1. Biochemistry 2019; 58:4903-4911.
  • Ozdemir ES, Jang H, Gursoy A, Keskin O, Li Z, Sacks DB, Nussinov R. Unraveling the molecular mechanism of interactions of the Rho GTPases Cdc42 and Rac1 with the scaffolding protein IQGAP2. J Biol Chem 2018; 293:3685-3699. [Selected as the representative ‘Computational biology’ article for the 2018 retrospective collection “The year in JBC: 2018.”]
  • Zhang M, Li Z, Wang G, Jang H, Sacks DB, Zhang J, Gaponenko V, Nussinov R. Calmodulin (CaM) activates PI3K⍺ by targeting the “soft” CaM-binding motifs in both the nSH2 and cSH2 domains of p85⍺. J Phys Chem B 2018; 122:11137-11146.
  • Gorisse L, Li Z, Hedman AC, Sacks DB. IQGAP1 binds the Axl receptor kinase and inhibits its signaling. Biochem J 2018; 475:3073-3086.
  • Li Z, Zhang Y, Hedman AC, Ames JB, Sacks DB. Calmodulin lobes facilitate dimerization and activation of estrogen receptor-α. J Biol Chem 2017; 292:4614-4622.
  • Chawla B, Hedman AC, Sayedyahossein S, Erdemir HH, Li Z, Sacks DB. Absence of IQGAP1 protein leads to insulin resistance. J Biol Chem 2017; 292:3273-3289.
  • LeCour L, Boyapati VK, Liu J, Li Z, Sacks DB, Worthylake DK. The structural basis for Cdc42-induced dimerization of IQGAPs. Structure 2016; 24:1499-1508.
  • Sayedyahossein S, Li Z, Hedman AC, Morgan CJ, Sacks DB. IQGAP1 binds to Yes-associated protein (YAP) and modulates its transcriptional activity. J Biol Chem 2016; 291:19261-19273
  • Erdemir HH, Li Z, Sacks DB. IQGAP1 binds to estrogen receptor-a and modulates its  function. J Biol Chem 2014; 289:9100-9112.
  • Zhang Y, Li Z, Sacks DB, Ames JB. Structural basis for Ca2+-induced activation and dimerization of estrogen receptor a by calmodulin. J Biol Chem 2012; 287:9336-9344.
    [Journal of Biological Chemistry Paper of the Week]
    [Recommended by the Faculty of 1000]
  • Kim H, White CD, Li Z, Sacks DB. Salmonella enterica serotype Typhimurium usurps the scaffold protein IQGAP1 to manipulate Rac1 and MAPK signalling. Biochem J 2011; 440:309-318.
  • White CD, Li Z, Dillon DA, Sacks DB. IQGAP1 binds human epidermal growth factor receptor 2 (HER2) and modulates trastuzumab resistance. J Biol Chem 2011; 286:29734-29747.
    [Recommended by the Faculty of 1000]
  • Sharma S, Findlay GM, Bandukwala HS, Oberdoerffer S, Baust B, Li Z, Schmidt V, Hogan PG, Sacks DB, Rao A. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc Natl Acad Sci USA 2011; 108:11381-11386.
  • McNulty DE, Li Z, White CD, Sacks DB, Annan RS. MAP kinase scaffold IQGAP1 binds the EGF receptor and modulates its activation. J Biol Chem 2011; 286:15010-15021.
  • Brown MD, Bry L, Li Z, Sacks DB. Actin pedestal formation by EPEC is regulated by IQGAP1, calcium and calmodulin. J Biol Chem 2008; 283:35212-22. PMCID: PMC2596374
  • Ren JG, Li Z, Sacks DB. IQGAP1 integrates Ca2+/calmodulin and B-RAF signaling. J Biol Chem 2008; 283:22972-82.
  • Owen D, Campbell LJ, Littlefield K, Evetts KA, Li Z, Sacks DB, Lowe PN, Mott HR. The IQGAP1-Rac1 and IQGAP1-Cdc42 Interactions: INTERFACES DIFFER BETWEEN THE COMPLEXES. J Biol Chem 2008; 283:1692-704.
  • Jadeski L, Mataraza JM, Jeong HW, Li Z, Sacks DB. IQGAP1 stimulates proliferation and enhances tumourigenesis of human breast epithelial cells. J Biol Chem 2008; 283:1008-17.
  • Brown MD, Bry L, Li Z, Sacks DB. IQGAP1 regulates Salmonella invasion through interactions with actin, Rac1 and Cdc42. J Biol Chem 2007; 282:30265-72.
  • Jeong HW, Li Z, Brown MD, Sacks DB. IQGAP1 binds Rap1 and modulates its activity. J Biol Chem 2007; 282:20752-62.
  • Ren JG, Li Z, Sacks DB. IQGAP1 modulates activation of B-Raf. Proc Natl Acad Sci USA 2007; 104:10465-9.
  • Mataraza JM, Li Z, Jeong HW, Brown MD, Sacks DB. Multiple proteins mediate IQGAP1-stimulated cell migration. Cell Signal 2007; 19:1857-65.
  • Li L, Li Z, Howley PM, Sacks DB. E6AP and calmodulin reciprocally regulate estrogen receptor stability. J Biol Chem 2006; 281:1978-85.
  • Roy M, Li Z, Sacks DB. IQGAP1 is a scaffold for mitogen-activated protein kinase signalling. Mol Cell Biol 2005; 25:7940-52.
  • Ren JG, Li Z, Crimmins DL, Sacks DB. Self-association of IQGAP1: Characterization and functional sequelae. J Biol Chem 2005; 280:34548-34557.
  • Li L, Li Z, Sacks DB. The transcriptional activity of estrogen receptor-alpha is dependent on Ca2+/calmodulin. J Biol Chem 2005; 280:13097-104.
  • Li Z, McNulty DE, Marler KJM, Lim L, Hall C, Annan RS, Sacks DB. IQGAP1 promotes neurite outgrowth in a phosphorylation-dependent manner. J Biol Chem 2005; 280:13871-8.
  • Roy M, Li Z, Sacks DB. IQGAP1 binds ERK2 and modulates its activity. J Biol Chem 2004; 279:17329-37.
  • Mataraza JM, Briggs MW, Li Z, Entwistle A, Ridley AJ, Sacks DB. IQGAP1 promotes cell motility and invasion. J Biol Chem 2003; 278:41237-45.
  • Li Z, Sacks DB. Elucidation of the interaction of calmodulin with the IQ motifs of IQGAP1. J Biol Chem 2003; 278:4347-4352.
  • Li L, Li Z, Sacks DB. Calmodulin regulates the transcriptional activity of estrogen receptors: selective inhibition of calmodulin function in subcellular compartments. J Biol Chem 2003; 278:1195-1200.
  • Mataraza JM, Briggs MW, Li Z, Frank R, Sacks DB. Identification and characterization of the Cdc42-binding site of IQGAP1. Biochem Biophys Res Commun 2003; 305:315-321.
  • Swart-Mataraza JM, Li Z, Sacks DB. IQGAP1 is a component of Cdc42 signalling to the cytoskeleton. J Biol Chem 2002; 277:24753-24763.
  • Briggs MW, Li Z, Sacks DB. IQGAP1-mediated stimulation of transcriptional co-activation by β-catenin is modulated by calmodulin. J Biol Chem 2002; 277:7453-7465.
  • Sokol SY, Li Z, Sacks DB. The effect of IQGAP1 on Xenopus embryonic ectoderm requires Cdc42. J Biol Chem 2001; 276:48425-48430.
  • Li Z, Joyal JL, Sacks DB. Calmodulin enhances the stability of the estrogen receptor. J Biol Chem 2001; 276: 17354-17360.
  • Kim SH, Li Z, Sacks DB. E-cadherin-mediated cell-cell attachment activates Cdc42. J Biol Chem 2000; 275:36999-37005.
  • Li Z, Joyal JL, Sacks DB. Binding of IRS proteins to calmodulin is enhanced in insulin resistance. Biochemistry 2000; 39:5089-5096.
  • Li Z, Kim SH, Higgins JM, Brenner MB, Sacks DB. IQGAP1 and calmodulin modulate E-cadherin function. J Biol Chem 1999; 274:37885-37892.
  • Ho YD, Joyal JL, Li Z, Sacks DB. IQGAP1 integrates Ca2+/calmodulin and Cdc42 signaling. J Biol Chem 1999; 274:464-470.

NOTE: PDF documents require the free Adobe Reader.

This page last updated on 01/15/2021

You are now leaving the NIH Clinical Center website.

This external link is provided for your convenience to offer additional information. The NIH Clinical Center is not responsible for the availability, content or accuracy of this external site.

The NIH Clinical Center does not endorse, authorize or guarantee the sponsors, information, products or services described or offered at this external site. You will be subject to the destination site’s privacy policy if you follow this link.

More information about the NIH Clinical Center Privacy and Disclaimer policy is available at https://www.cc.nih.gov/disclaimers.html