Drug Absorption and Bioavailability
Juan J.L. Lertora, M.D., Ph.D.
Director
Clinical Pharmacology Program
October 1, 2009
Office of Clinical Research Training and Medical Education
National Institutes of Health
Clinical Center

GOALS of Drug Absorption and Bioavailability Lecture
• Factors Affecting Drug Absorption
• Estimation of Bioavailability
• Clinical Significance of Differences in Bioavailability
• Prediction of Bioavailability in High-Throughput Drug Candidate Screening

Factors Affecting DRUG ABSORPTION
• Biopharmaceutic Factors
 - Tablet compression
 - Coating and Matrix
 - Excipients
• Interactions
 - Food
 - Other Drugs
 - Bacteria
• Physiological Factors
Change in PHENYTOIN Excipients Results in Epidemic Toxicity*

Factors Affecting DRUG ABSORPTION

- Biopharmaceutic Factors
- INTERACTIONS
 - Food
 - Other Drugs
 - Bacteria
- Physiologic Factors

ENTERIC METABOLISM OF DIGOXIN*

Factors Affecting DRUG ABSORPTION

• Biopharmaceutic Factors
• Interactions
• PHYSIOLOGICAL FACTORS

Drug Absorption

Passive Non-Ionic Diffusion: Primary mechanism for most drugs.

Drug Absorption

- Specialized Transport Mechanisms

Large Neutral Amino Acid Transporter: L-Dopa, Methyldopa, Baclofen
Drug Absorption
- Specialized Transport Mechanisms

Oligopeptide Transporter (PEPT-1):
- Amino-beta-lactams
- ACE Inhibitors

Drug Absorption
- Specialized Transport Mechanisms

Monocarboxylic Acid Transporter:
- Salicylic acid
- Pravastatin

FALLACIES Concerning Gastric Drug Absorption
- Acidic Drugs absorbed in the stomach
- Basic Drugs absorbed in the small intestine
- Gastric pH is always acidic

In fact, most drug absorption occurs in the SMALL INTESTINE
ASPIRIN ABSORPTION FROM STOMACH AND SMALL INTESTINE

<table>
<thead>
<tr>
<th>pH</th>
<th>ASA ABSORPTION (micromol/100 mg protein/hr)</th>
<th>ASA SERUM LEVEL (mg/100 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STOMACH</td>
<td>SMALL BOWEL</td>
</tr>
<tr>
<td>3.5</td>
<td>346</td>
<td>469</td>
</tr>
<tr>
<td>6.5</td>
<td>0</td>
<td>424</td>
</tr>
</tbody>
</table>

TABLE 1: ASPIRIN (ASA) ABSORPTION FROM SIMULTANEOUSLY PERFUSED STOMACH AND SMALL INTESTINE

- **Variation in Gastric and Intestinal pH**

- **Physiological Factors Affecting Drug Absorption**
 - Rate of gastric emptying is a major determinant of initial delay in drug absorption.
 - Intestinal motility is a determinant of the extent of drug absorption.

PATTERNS OF GASTRIC MOTOR ACTIVITY

FASTING (Cyclical Pattern < 2 HR)
- Phase 1 - Quiescence
- Phase 2 - Irregular Contractions
- Phase 3 - Major Motor Complex Burst
- Phase 4 - Transition Period

Interdigestive Intestinal Motor Activity in Humans*

PATTERNS OF GASTRIC MOTOR ACTIVITY

POST PRANDIAL (Up to 10 hr delay)
- Pylorus constricted
- Antral contractions reduce particle size
GI TRANSIT - SUSTAINED-RELEASE CARBAMAZEPINE FORMULATION*

EXTENT RELEASED
75%
56%

Variation in “Peak” Levels ACETAMINOPHEN

Gastric Emptying Rate Affects ACETAMINOPHEN Absorption

Factors Affecting RATE and EXTENT of Drug Absorption

RESERVE LENGTH is the anatomical length over which absorption of a drug can occur MINUS the length at which absorption is complete.

Effect of METOCLOPRAMIDE on Digoxin Absorption

Effect of PROPANTHELINE on Digoxin Absorption*

Factors Affecting RATE and EXTENT of Drug Absorption

Normal Intestinal Villi
Broad Intestinal Villi in a Patient with **SPRUE**

Digoxin Levels in Patients with **INTESTINAL MALABSORPTION**

<table>
<thead>
<tr>
<th>DOSE FOR BOTH GROUPS = 0.25 mg/day.</th>
<th>CONTROLS</th>
<th>MALABSORPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>[DIGOXIN] (ng/mL)</td>
<td>1.3 ± 0.3</td>
<td>0.4 ± 0.3</td>
</tr>
<tr>
<td>URINE D-XYLOSE EXCRETION (gm/5 hr)</td>
<td>† 5 – 8†</td>
<td>1.1 – 4.1</td>
</tr>
</tbody>
</table>

† NORMAL RANGE

Factors Affecting RATE and EXTENT of Drug Absorption
P-GLYCOPROTEIN EFFLUX PUMP

INTESTINAL LUMEN

OUT

MEMBRANE

IN

ATP

ATP

+ +

SLIDE COURTESY OF M. GOTTESMAN

BIOAVAILABILITY OF SOME P-GLYCOPROTEIN SUBSTRATES

<table>
<thead>
<tr>
<th>DRUG</th>
<th>> 70% ABSORPTION</th>
<th>30% - 70% ABSORPTION</th>
<th>< 30% ABSORPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRUG</td>
<td>F %</td>
<td>DRUG</td>
<td>F %</td>
</tr>
<tr>
<td>PHENOBARBITAL</td>
<td>100</td>
<td>CYCLOSPORINE</td>
<td>25</td>
</tr>
<tr>
<td>LEVOFLOXACIN</td>
<td>99</td>
<td>TACROLIMUS</td>
<td>25</td>
</tr>
<tr>
<td>METHADONE</td>
<td>92</td>
<td>MORPHINE</td>
<td>24</td>
</tr>
<tr>
<td>PHENYTIN</td>
<td>90</td>
<td>VERAPAMIL</td>
<td>22</td>
</tr>
<tr>
<td>METHYLPREDNISOLONE</td>
<td>82</td>
<td>NICARDIPINE</td>
<td>18</td>
</tr>
<tr>
<td>TETRACYCLINE</td>
<td>77</td>
<td>SIROLIMUS</td>
<td>15</td>
</tr>
<tr>
<td>AMITRIPTYLINE</td>
<td>48</td>
<td>DILTIAZEM</td>
<td>13</td>
</tr>
<tr>
<td>ERYTHROMYCIN</td>
<td>35</td>
<td>SAQUINAVIR</td>
<td>12</td>
</tr>
<tr>
<td>CHLORPROMAZINE</td>
<td>32</td>
<td>ATORVASTATIN</td>
<td>5</td>
</tr>
</tbody>
</table>

30% - 70% ABSORPTION

SYSTEMIC CIRCULATION

GUT WALL

SMALL BOWEL

EFFECTIVE ABSORBING SURFACE

75% NET ABSORPTION

25% UNABSORBED
FACTORS AFFECTING RATE AND EXTENT OF DRUG ABSORPTION

Sites of FIRST-PASS Elimination

- **INTESTINAL MUCOSA**
 - CYP Enzymes
 - P-Glycoprotein

- **LIVER**
 - CYP Enzymes

FIRST-PASS METABOLISM
First-Pass Metabolism ± P-Glycoprotein Transport

ALDOSTERONE MORAINE *
CYCLOSPORINE* NORTRIPTYLINE
ISOPROTERENOL ORGANIC NITRATES
LIDOCAINE PROPRANOLOL

* Known P-Glycoprotein Substrates

Factors Affecting RATE and EXTENT of Drug Absorption

GOALS of Drug Absorption and Bioavailability Lecture

- Factors Affecting Drug Absorption
- ESTIMATION OF BIOAVAILABILITY
- Clinical Significance of Differences in Bioavailability
- Prediction of Bioavailability
BIOAVAILABILITY

BIOAVAILABILITY is the *RELATIVE AMOUNT* (F) of a drug dose that reaches the systemic circulation *unchanged* and the *RATE* at which this occurs.

Serum Concentration-Time Curve after a Single Oral Dose

Significance of AUC

\[
dE = CL_E \cdot C \, dt \\
E = CL_E \int_0^\infty C \, dt \\
D \cdot F = CL_E \cdot AUC
\]
Calculation of AUC
Trapezoidal Rule

From: Rowland M, Tozer TN. Clinical Pharmacokinetics. p 470.

AUC A > B

BUT IS A BETTER THAN B?

ABSOLUTE Bioavailability

% Absorption $= \frac{D_{\text{IV}} \bullet AUC_{\text{oral}}}{D_{\text{oral}} \bullet AUC_{\text{IV}}} \times 100$

Comparison here is between an ORAL and an IV Formulation
RELATIVE Bioavailability

\[
\% \text{ Relative B.A.} = \frac{D_{\text{Ref}} \cdot AUC_{\text{Test}}}{D_{\text{Test}} \cdot AUC_{\text{Ref}}} \times 100
\]

Comparison here is between 2 ORAL Formulations

AUC Values have to be Normalized for Dose
ASSESSMENT of Bioavailability

- AUC Estimates can be used to estimate Extent of Drug Absorption.

- Recovery of Parent Drug in Urine can be used to estimate Extent of Drug Absorption.

- **How is ABSORPTION RATE assessed?**
 - T\text{MAX}
 - Integrated Pharmacokinetic Analysis of Absolute Bioavailability.

Extent of Absorption from Renal Excretion of Unchanged Drug

Since: \(F \times D = E \) and \(E = \left(\frac{CL_k}{CL_R} \right) E_R \)

\(F \times D_{\text{oral}} = \left(\frac{CL_k}{CL_R} \right) E_{R(oral)} \) and \(D_{IV} = \left(\frac{CL_k}{CL_R} \right) E_{R(IV)} \)

So: \% Absorption = \(\frac{D_{IV} \times E_{R(oral)}}{D_{oral} \times E_{R(IV)}} \times 100 \)

ASSESSMENT of Bioavailability

- AUC Estimates Can Be Used to Estimate Extent of Drug Absorption.

- **HOW IS ABSORPTION RATE ASSESSED?**
 - T\text{MAX}
 - Integrated Pharmacokinetic Analysis of Absolute Bioavailability.
INTERACTION OF DRUG ABSORPTION AND DISPOSITION PROCESSES

\[G(t) \ast H(t) = X(t) \]

\[\text{IV DOSE} \quad \text{ORAL DOSE} \]

THE OPERATION OF CONVOLUTION

INTEGRAL FORM: \(X(t) = \int_{0}^{t} G(\tau) \ast H(t - \tau) \, d\tau \)

TIME DOMAIN: \(X(t) = G(t) \ast H(t) \)

SUBSIDIARY EQUATION: \(x(s) = g(s) \ast h(s) \)

MODEL Used to Analyze Kinetics of Drug Absorption

\(k_a \) is absorption rate

\(k_o \) is rate of nonabsorptive loss
Calculation of Bioavailability from First-Order Absorption Model

\[F = \frac{k_a}{k_a + k_o} \]

Methods for Assessment of ABSOLUTE BIOAVAILABILITY

• CONVENTIONAL:
 - IV and ORAL doses given on two separate occasions.
 - Requires two study sessions
 - Requires two sets of blood samples
 - Assumes no change in disposition parameters between studies

• STABLE ISOTOPE:
 - One study and set of blood samples
 - Special synthesis requirements
 - Mass Spectrometer Assay required

NAPA-13C\textsubscript{2}

\[\text{\textit{N}}\text{-ACETYLPROCAINAMIDE (NAPA-}^{13}\text{C}_2) \]
Simultaneous Administration of Oral NAPA and IV NAPA-C^{13}*

MODEL Used to Analyze Oral NAPA and IV NAPA-C^{13} Kinetics*

BIOAVAILABILITY Estimates From Kinetic Analysis and URINE RECOVERY

<table>
<thead>
<tr>
<th>PATIENT NUMBER</th>
<th>KINETIC ANALYSIS (%)</th>
<th>NAPA RECOVERY IN URINE* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 66.1</td>
<td>65.9</td>
<td></td>
</tr>
<tr>
<td>2 92.1</td>
<td>92.1</td>
<td></td>
</tr>
<tr>
<td>3 68.1</td>
<td>69.9</td>
<td></td>
</tr>
<tr>
<td>4 88.2</td>
<td>73.1</td>
<td></td>
</tr>
<tr>
<td>5 75.7</td>
<td>75.6</td>
<td></td>
</tr>
</tbody>
</table>

* Corrected for absorption lag time.
Factors Affecting RATE and EXTENT of Drug Absorption

NAPA PK Model After IV Dose

\[\text{ICL}_F = Q_F (1 - e^{-Q_F/\text{CL}_F}) \]

\[\text{ICL}_S = Q_S (1 - e^{-Q_S/\text{CL}_S}) \]

\text{ICL}_F \text{ PARTLY REFLECTS SPLANCHNIC BLOOD FLOW}

Relationship Between CLF and Extent of NAPA Absorption

\[R^2 = 0.8, p = 0.045 \]

THOUGHTS About Absolute Bioavailability Studies

• Absolute Bioavailability is usually studied in Healthy Subjects, NOT in the Patient Population for whom the drug is intended.
• The Stable Isotope Method is ideally suited for studies in Special Populations (e.g. Pediatrics, Pregnant Women, other)

GOALS of Drug Absorption and Bioavailability Lecture

• Factors Affecting Drug Absorption
• Estimation of Bioavailability
• Clinical Significance of Differences in Bioavailability
• Prediction of Bioavailability

RELATIVE Bioavailability Terms

Bioequivalence: AUC and Cmax within 80% - 125% of reference compound.
Bioinequivalence: Greater difference in bioavailability.
Therapeutic Equivalence: Similar clinical effectiveness and safety.
Therapeutic Inequivalence: Important clinical difference in bioavailability.
AUC A > B:

Therapeutic Significance?

- **AUC A > B:**
 - **A** and **B** equally effective.

- **AUC A > B:**
 - **A** more effective than **B**.

- **AUC A > B:**
 - **B** ineffective.
Equal AUC but Different K_a:
B is Ineffective

Equal AUC but Different K_a:
A is Toxic

RELATIVE BIOAVAILABILITY

CONCLUSIONS

• BIOEQUIVALENCE =
 THERAPEUTIC EQUIVALENCE

• BIOINEQUIVALENCE NOT NECESSARILY =
 THERAPEUTIC INEQUIVALENCE
GOALS of Drug Absorption and Bioavailability Lecture

- Factors Affecting Drug Absorption
- Estimation of Bioavailability
- Clinical Significance
- *Prediction* of Bioavailability as part of *High-Throughput* Drug Candidate Screening

WHY DRUG DEVELOPMENT FAILS

- Unsuitable **Biopharmaceutical** Properties
- Unsuitable **Clinical Pharmacokinetics**
- Pharmacology (PD) **Doesn’t Work in Humans**
- **Unexpected Toxicity** is Encountered

* Ronald E. White, Bristol-Myers Squibb (From Good Ligands to Good Drugs, AAPS-NIGMS Symposium, February 19-21, 1998)

BIOPHARMACEUTIC DRUG CLASSIFICATION

CLASS I:
- High Solubility-High Permeability

CLASS II:
- Low Solubility-High Permeability

CLASS III:
- High Solubility-Low Permeability

CLASS IV:
- Low Solubility-Low Permeability

Three CRITICAL Biopharmaceutical Properties

• Drug Solubility Relative to Dose
 GOOD = Highest Dose in 250 mL H₂O, pH 1.0-7.5

• Dissolution Rate of Formulation
 GOOD = 85% Dissolution in 15 min

• Intestinal Permeability of Drugs

CORRELATION of Rates of Drug Dissolution and Oral Absorption

\[
y = -8.6 + 1.07x \\
R^2 = 0.970
\]

Three CRITICAL Biopharmaceutical Properties

• Drug Solubility Relative to Dose

• Dissolution Rate of Formulation

• INTESTINAL PERMEABILITY of Drug
Bioavailability vs. Jejunal Permeability

Bioavailability vs. Caco-2 Cell Permeability

Evaluation of Caco-2 Cell Model

• ADVANTAGES
 - *In Vitro* Method
 - Suitable for High-Throughput

• DISADVANTAGES
 - ↓ Paracellular Permeability
 - ↓ Drug Metabolizing Enzymes and Transporters
 - No Hepatic First-Pass Metabolism
BIOPHARMACEUTIC DRUG CLASSIFICATION *

CLASS I:
HIGH SOLUBILITY-HIGH PERMEABILITY
- in vitro – in vivo correlation generally good
- but no way to account for 1st pass metabolism

CLASS II:
LOW SOLUBILITY-HIGH PERMEABILITY
- rate of absorption limited by dissolution rate
- in vitro – in vivo correlation tenuous since many factors may affect dissolution

CLASS III:
HIGH SOLUBILITY-LOW PERMEABILITY
- Intestinal reserve length is marginal.
- If dissolution is rapid, bioavailability will reflect intestinal permeability and transit time.

BIOPHARMACEUTIC DRUG CLASSIFICATION

CLASS IV:
LOW SOLUBILITY-LOW PERMEABILITY

- *in vitro – in vivo* correlation poor
- good bioavailability not expected

THE BOTTOM LINE

CLASS I DRUGS:
HIGH SOLUBILITY-HIGH PERMEABILITY

- Preferred as development candidates
- FDA may waive repeat *in vivo* testing if initial
 - formulation has good bioavailability*