Bladder Cancer Diagnosis, Management, and Current Research

Piyush K. Agarwal, MD
Head, Bladder Cancer Section
Urologic Oncology Branch
National Cancer Institute
piyush.agarwal@nih.gov
Slides developed by the National Cancer Institute, and used with permission.
Agenda

• Overview of Bladder Cancer
 – Epidemiology
 – Risk Factors
 – Evaluation
 – Staging
 – Grading

• Current Treatment Strategies
 – Transurethral Resection of Bladder Tumor (TURBT)
 – Intravesical Therapy
 – Radical Cystectomy
 • Chemotherapy and Radiation
 – Urinary Diversions
 – Robotic Approaches

• Current Research
Important Facts: Bladder Cancer

- 4th most common cancer in men and 12th most common cancer in women in 2014
- 74,690 new cases and 15,580 deaths in 2014
- Represents 7% of all cancers and 3% of all cancer deaths
- Recurrence and routine surveillance/treatment make bladder cancer most expensive malignancy to treat from diagnosis to death ($187,241/patient in 2001)
- M:F = 3:1 (survival better in men)
- Peak incidence ages 60-70
- Majority (~93%) are urothelial cancer (transitional cell carcinoma)

Siegel et al. CA Cancer J Clin 2014.
Risk Factors

<table>
<thead>
<tr>
<th>Exogenous</th>
<th>Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schistosomiasis</td>
<td>Aniline dyes</td>
</tr>
<tr>
<td>Tobacco</td>
<td>Benzene derivatives</td>
</tr>
<tr>
<td>Phenacetin metabolites</td>
<td>(aromatic amines)</td>
</tr>
<tr>
<td>Cytostatics</td>
<td>Paints, oils, gasoline</td>
</tr>
<tr>
<td>(Cyclophosphamides)</td>
<td></td>
</tr>
<tr>
<td>? Sweeteners (Saccharin, cyclamate)</td>
<td></td>
</tr>
<tr>
<td>Pelvic radiation</td>
<td></td>
</tr>
<tr>
<td>Blackfoot disease (Taiwan)</td>
<td></td>
</tr>
<tr>
<td>A. Fangchi (Chinese herb)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endogenous</th>
<th>Tryptophan metabolites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic irritations</td>
<td>Nitrosamines</td>
</tr>
<tr>
<td>(catheters) /Toxins</td>
<td></td>
</tr>
<tr>
<td>Chronic inflammation</td>
<td></td>
</tr>
</tbody>
</table>
Occupations at Risk

- Dry cleaners
- Painters
- Autoworkers
- Truck drivers
- Paper manufacturers
- Metal workers
- Plumbers
- Hairdressers
- Tire and rubber workers
- Chemical workers
- Petroleum workers
Presentation

• Gross hematuria most common
 • Most commonly intermittent
 – Gross 68-97%
 – Microhematuria 11%
• Timing of hematuria
 – Initial – suggests urethral source
 – Terminal – suggests posterior urethra, bladder neck, prostate
 – Continuous – suggests bladder etiology
• Irritative voiding symptoms (especially in absence of UTI)
Work-up for Hematuria

- Cystoscopy
- Urinary Tumor Marker
 - Usually cytology
- Imaging
 - Renal Ultrasound and IVP traditionally
 - Now CT Urogram
 - Even MR Urogram
- Transurethral Resection of Bladder Tumor (TURBT) and Exam Under Anesthesia (EUA)
Cystoscopy
CT Urogram – New Gold Standard

- Right ureteral tumor
- Several bladder tumors
EUA and TURBT
Bladder Cancer Staging

Stage 0 Bladder Cancer

- Bladder
- Ureter
- Fat around the bladder
- Muscle layers
- Connective tissue
- Inner lining

Stage Ta
- Papillary carcinoma

Stage Tis
- Carcinoma in situ
Bladder Cancer Staging

Stage T1
Bladder Cancer Staging

Stage T2
Stages of Bladder Cancer
Stage

- ~70% non-muscle invasive (superficial)
 - Despite adequate therapy, 60-70% recur and 10-20% progress
 - 70% Ta and 30% T1
- ~25% muscle-invasive
 - 5 year overall survival 78% (45% with + nodes)
 - Morbidity of treatment (cystectomy +/- chemotherapy)
 - Majority present as muscle-invasive initially
- 5% metastatic disease
 - Chemotherapy produces median survival of 18 months and long-term disease-free survival in 10-15%

Stein et al. JCO 2001.
Dinney CPN. Urology 2006.
Grade

Low Grade

High Grade
Disease Recurrence

- Up to 70% will recur within 5 years

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Probability of Recurrence in 5 years</th>
<th>Probability of Progression to Muscle Invasion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta, low grade</td>
<td>50%</td>
<td>Minimal</td>
</tr>
<tr>
<td>Ta, high grade</td>
<td>60%</td>
<td>Moderate</td>
</tr>
<tr>
<td>T1, low grade (rare)</td>
<td>50%</td>
<td>Moderate</td>
</tr>
<tr>
<td>T1, high grade</td>
<td>50-70%</td>
<td>Moderate-High</td>
</tr>
<tr>
<td>Tis</td>
<td>50%-90%</td>
<td>High</td>
</tr>
</tbody>
</table>

Disease Progression

Estimates of disease progression in superficial bladder cancer

<table>
<thead>
<tr>
<th>Tumor type(^a)</th>
<th>% Relative frequency</th>
<th>% Progression</th>
<th>% Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noninvasive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papilloma</td>
<td>10</td>
<td>0–1</td>
<td>0</td>
</tr>
<tr>
<td>PUNLMP</td>
<td>20</td>
<td>3</td>
<td>0–1</td>
</tr>
<tr>
<td>Papillary cancer low grade (TaG1)</td>
<td>20</td>
<td>5–10</td>
<td>1–5</td>
</tr>
<tr>
<td>Papillary cancer high grade (TaG3)</td>
<td>30</td>
<td>15–40</td>
<td>10–25</td>
</tr>
<tr>
<td>Invasive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papillary cancer (T1G3)</td>
<td>20</td>
<td>30–50</td>
<td>33</td>
</tr>
<tr>
<td>Carcinoma in situ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>10</td>
<td>>50</td>
<td>—</td>
</tr>
<tr>
<td>Secondary</td>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: PUNLMP, Papillary urothelial neoplasm of low malignant potential.

\(^a\) World Health Organization/International society of Urological Pathology Consensus Classification of Superficial Bladder Cancer [9].

Data from Refs. [4,6,8,9].
Summary of Standard of Care Therapy

- Low grade, Ta or T1 disease
 - Surveillance
 - Possible intravesical therapy

- High grade (cIS, Ta, T1)
 - Repeat TURBT
 - Intravesical therapy

- Muscle-invasive disease (T2)
 - Cystectomy and urinary diversion

- Lymph Node/Distant Metastases (N+/M+)
 - Chemotherapy +/- radiation

High Cost
High Recurrence
High Cost
High Progression
High Cost
Morbid Operation
50% Live
High Cost
0% Live
Surgical Therapies for Bladder Cancer

- Transurethral resection of bladder tumor (TURBT)
- Intravesical Therapy
- Radical Cystectomy
 - *** +/- Neoadjuvant Chemotherapy
 - *** Trimodal Therapy (XRT, Chemo, Surgery)
- Urinary Diversions
- Robotic Approaches to Bladder Surgery
 - Partial Cystectomy
 - Radical Cystectomy

*** not to be discussed due to time
Man with Visible Blood in the Urine
TURBT
INTRAVESICAL THERAPY
Who is a Candidate for Intravesical Therapy?

- High Risk Disease
 - Multifocal disease
 - T1G3 (or all T1)
 - 70-80% recurrence rate and 30% progression
 - CIS
 - Tumors in Dome/Anterior Wall
 - High risk of progression
Intravesical Agents

<table>
<thead>
<tr>
<th>Agent</th>
<th>Mechanism of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunomodulatory Agents</td>
<td></td>
</tr>
<tr>
<td>Bacillus Calmette-Guérin (BCG)</td>
<td>• Inflammatory host response; release of cytokines</td>
</tr>
<tr>
<td></td>
<td>• May be combined with interferons<sup>90-94</sup></td>
</tr>
<tr>
<td>Interferons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lymphocyte activation; cytokine release; phagocyte stimulation</td>
</tr>
<tr>
<td></td>
<td>• Antiproliferative actions</td>
</tr>
<tr>
<td></td>
<td>• Antiangiogenic<sup>31,90</sup></td>
</tr>
<tr>
<td>Chemotherapeutic Agents</td>
<td></td>
</tr>
<tr>
<td>Thiotepa</td>
<td>• Alkylating agent; cross-links nucleic acids<sup>95</sup></td>
</tr>
<tr>
<td>Mitomycin C</td>
<td>• Antibiotic; inhibits DNA synthesis<sup>76-78</sup></td>
</tr>
<tr>
<td>Doxorubicin, epirubicin, valrubicin</td>
<td>• Intercalating agents; inhibits DNA synthesis<sup>75,96-98</sup></td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>• Deoxycytidine analog; inhibits DNA synthesis<sup>99-103</sup></td>
</tr>
</tbody>
</table>
Intravesical Agents

<table>
<thead>
<tr>
<th>Agent</th>
<th>Mechanism of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus Calmette-Guérin (BCG)</td>
<td>Prevent recurrence & progression</td>
</tr>
<tr>
<td>Interferon</td>
<td>• Lymphocyte activation; cytokine release; phagocyte stimulation</td>
</tr>
<tr>
<td></td>
<td>• Antiproliferative actions</td>
</tr>
<tr>
<td></td>
<td>• Antiangiogenic [31,90]</td>
</tr>
<tr>
<td>Chemotherapeutic Agents</td>
<td></td>
</tr>
<tr>
<td>Mitomycin C</td>
<td></td>
</tr>
<tr>
<td>Doxorubicin, epirubicin, valubicin</td>
<td></td>
</tr>
<tr>
<td>Gemcitabine</td>
<td></td>
</tr>
</tbody>
</table>

AUA Guidelines 2007.
Intravesical Therapy: Mitomycin C (MMC)

- Cross linking agent inhibits DNA synthesis and other mechanisms (alkylating agent)
- Non-cell cycle specific but sensitive in G1
- Large molecule (334 kd) – minimal systemic absorption and effects
- Average CR: 36%; less in recurrence: 19-42%
- Higher response in CIS (58%) than papillary lesions (43%)
- Role of maintenance therapy uncertain
Mitomycin C: Side Effects

- Chemical cystitis: up to 40% pts
- Decreased bladder capacity
- Skin rash/palmer desquamation (contact dermatitis)
- Leukopenia or bladder contraction is rare
Post-TURBT MMC

- Single post-TURBT instillation of MMC can decrease the time to recurrence but does not affect progression (Sylvester 2004) – 39% decrease in odds recurrence compared to TURBT alone
- Data is particularly strong for patients with a single tumor:
 - 35.8% recurrence rate compared to 65.2% recurrence for patients with multiple tumors
- EUA and AUA guidelines – give post-TURBT intravesical therapy in majority of patients who undergo solitary or multifocal papillary tumors unless contraindication
History of BCG

- BCG has anti-tumor effects
 - 1929 autopsy study – lower frequency of cancer in patients with active or healed tuberculosis (TB)
 - 1950s – Old - mice infected with BCG increased resistance to tumor transplantation
 - Close contact between BCG and tumor cells
 - Immunocompetent host capable of mounting immunological reaction to mycobacterial antigens
 - Limited tumor burden
 - Adequate numbers of viable BCG organisms

HERR ET AL. J UROL 2008
BCG and Bladder Cancer

- 1975 – deKernion – treated isolated melanoma in bladder with intravesical BCG

- 1976 – Morales – first successful use of intravesical BCG for superficial TCC
 - Devised original protocol for induction
 - 6 doses because Frappier strain packaged in 6 vials
 - 120 mg/dose because tolerated by intradermal
 - Weekly instillation because adverse effects <1 week

- 1978 – Morales treated 10 patients and BCG reduced/eradicated tumor recurrences in 7
- 2 randomized controlled trials – SWOG (Lamm) and MSKCC conducted and confirmed reduced tumor recurrences compared to TURBT alone
- 1990 – FDA approved intravesical BCG
Effectiveness of BCG

- CIS
 - 60-80% complete remission
- Residual papillary disease
 - Eradicates in 45-60% but NOT substitute for good TURBT!
- Decreases Recurrence in all 20-65% (~40%)
- Response durable in 30% at 10 years
BCG Induction Therapy

• No Established Optimal Course
• Most use 6 week course
• An additional 6 week course advantageous in:
 – CIS: 30% additional response
How to Make BCG More Tolerable

- Can decrease side effects 30-50% by one of following:
 - Decrease dose to 1/3 or less
 - Space intervals to 2 weeks instead of 1 week
 - Decrease dwell time for BCG to 30 min
 - Administer fluoroquinolone 6 and 12 h after each dose
 - Use NSAID or COX-2 Inhibitor to potentiate favorable BCG immune response

BCG Failures

- **CIS and BCG**
 - 7% progression rate for untreated CIS
 - 20% progression rate after CR to BCG
 - 30% recurrence rate after BCG
- **Failure after one induction course for CIS**
 - 30% additional response in CIS with second course
- **Failure after two induction courses in NMIBC**
 - 30% progression over 3-5 years
 - Only 46.7% disease-free at 3.6 years
 - 50% metastatic disease over 3-5 years
- **Definitely consider alternate therapies or cystectomy**
 - 81% of surveyed US urologists reluctant to recommend cystectomy even for high risk cases of BCG failure x 2
 - Any CIS, high-grade, or T1

JOU DI ET AL. UROL ONCOL 2006.
RADICAL CYSTECTOMY

- First performed in 1887, 230 patients reported by Whitmore and Marshall in 1962 with 5 year survival rates of 21-49%
- Now 50% (78% if confined to muscle, 25% if lymph nodes involved)

= Removal of bladder, peri-vesical fat, overlying peritoneum, pelvic lymph nodes and in:
 Men - Prostate and seminal vesicles
 Women - Uterus and portion of anterior vaginal wall

However, recent movement for genital organ sparing surgery
Bowel Mobilization and Lymphadenectomy

- Mobilize cecum and small bowel to retroperitoneal attachments (ligament of Treitz)
- Mobilize sigmoid along line of Toldt
- Pack small bowel and right colon
- Identify ureters in RP just cephalad to common iliac vessels and ligate close to bladder
- Perform meticulous lymph node dissection (either before or after cystectomy)

• Divide lateral pedicles
• Denonvillier’s fascia formed by convergence of anterior and posterior peritoneal reflections
• Divide in plane between rectum and posterior sheath of Denonvillier’s fascia – “Don’t go down to Brownsville!”

URINARY DIVERSION
Urinary Diversion

- Bowel segment required
 - Each segment with unique metabolic consequences

- Types of Diversion
 - Conduit – non-continent “tubeless”
 - Jejunal
 - Ileal
 - Colon
 - Ureterostomy
 - Continent – “dry”
 - Non-orthotopic (e.g. Indiana Pouch)
 - Also known as continent cutaneous catheterizable pouches
 - Orthotopic (e.g. Studer ileal neobladder) – “can void”
Conduits (small bowel or large bowel)

- **Advantages:**
 - Simple and quick procedure (less OR time)
 - Few inherent complications
 - Time tested – longest F/U data
 - Can compensate for short ureters

- **Disadvantages:**
 - Visible stoma
 - Negative body image
 - Need for lifelong stoma care (external appliance)
 - Anxiety of urinary leakage/odor
Ileal Conduit
Nipple Stoma:

• 4 - 6 cm of intestine is brought through the abdominal wall
• Fascial sutures are placed
• Each suture is placed in the seromuscular layer 3 cm proximal
• placed through the full thickness of the distal end of the intestine, then secured to the dermis before it is tied.
Continent Urinary Diversion

Patient Selection:

- Serum creatinine < 2
- Adequate Liver function
- Adequate bowel function
- Adequate intellectual capacity, dexterity, and mobility
 - Able and willing to perform self-catheterization
- Patient compliance (agrees to lifelong f/u)
- Absence of short gut syndrome/IBD
 - Colonoscopy prior to using any colon for diversion
- Motivated patient
Indiana Pouch
Studer Pouch

Pros
- High capacity (500cc), low pressure (<20cm H2O)
- 92% day continence, 80% nighttime (in Studer’s hands!)
- No ileocecal valve involved

Cons
- Long ileal segment used
- 6% metabolic disturbance, B12 and bile salt
- 2% ureteral and 2% urethral stenosis
Neobladder - Post-op Care

- Irrigation of the neobladder regularly
- Peritoneal drainage
- Ureteral stents
- S/P tubes
- Teach the patient to void with abdominal pressure
- CIC if can’t void by himself
A French comic drawing from 1914 showing how the artist envisioned the operating room of year 2000
Robot-Assisted Laparoscopic Partial Cystectomy (RAPC)

14 year old boy with history of VHL and multiple pheochromocytomas s/p bilateral adrenal surgery
Now with elevated serum catecholamines and headaches with urination
Robot-Assisted Laparoscopic Partial Cystectomy (RAPC)

- When performed for TCC, recommend only if no CIS, negative margins possible, good resulting bladder capacity, and concomitant LN dissection
Robot-Assisted Laparoscopic Radical Cystectomy (RARC)

- Lymph node yield, OS, CSS, positive margin rate, and complications all similar to open series
- In most series, EBL, LOS, and time to bowel recovery quicker with RARC

Haber GP. BJU Int 2007
Pruthi RS. Urology 2008
Complications and Morbidity Still a Problem

• However, surgery has a 3% 90-day perioperative mortality rate
• Surgery can result in complication rate of 29-69% - most are grade I, II
• 5-year survival still ~50% for all muscle-invasive tumors at 5 years
 – Improves if final pathology favorable
 – Improvement seen with neoadjuvant chemotherapy
No Therapeutic Advance in Last Two Decades and 5-Year Survival Rates Dismal in Regional/Distant Disease

We Need New Drugs!

Siegel et al. CA Cancer J Clin 2014.
PANVAC PROTOCOL
Rationale and Background

• HG NMIBC (Ta, T1, and/or CIS) is managed by BCG but still with ~35% initial failure rate after induction course in terms of progression and/or recurrence. Although 20-35% of cases that fail an initial course can benefit from a second induction course, patients best served by radical cystectomy if continue to fail to respond.

• Radical cystectomy is potentially morbid and so unmet clinical need for patients that still have NMIBC that fails to respond to BCG.
• BCG works by unclear immunologic mechanism:
 – Athymic animals only respond to BCG when T cells administered
 – BCG-induced macrophage cytotoxicity importanted and promoted by Th1 immune system (TNF-a, IFN-y, IL-12, IL-18) and inhibited by Th2 immune system (IL-4, IL-10) and Tregs
 – T cell infiltration important as degree of infiltration (CD3, CD4, and CD8) with immune cells is greater in patients with a complete response to BCG
Rationale for Panvac

- Pox viral vector-based vaccine than can induce CD4 and CD8 antigen-specific immune response against MUC-1 and CEA
 - Also contains 3 co-stimulatory molecules
 - Excellent safety record in other tumors
 - Administered subcutaneously
- MUC-1 expression in up to 93% bladder tumors
- CEA expressed in 76% of HG tumors and 59% of T1 bladder tumors
- Postulate that this drug may enhance an immune response in HG tumors that have not responded to BCG
Hypotheses/Objectives

• Primary: PANVAC will augment BCG-induced cytotoxic T lymphocyte response against bladder cancer cells expressing MUC-1 and/or CEA when given with BCG and will result in greater **12 month RFS** than BCG alone in patients who failed to respond to at least 1 previous induction course of BCG.

• Secondary: PANVAC+BCG will have greater **PFS** and greater **immune response** than BCG alone.
Eligibility

• Adults with histologically confirmed high grade (Ta, T1, and/or CIS) UC of bladder who “failed” at least one induction course of BCG (either progressed and/orrecurred)
• Patients who fail >1 induction course of BCG have been offered radical cystectomy and either refuse or are not surgical candidates for cystectomy
• ECOG PS 0-2
Immune Correlates

- Biopsy (compared day 0 and week 17 tissue) IHC for:
 - CEA and MUC-1
 - CD4, CD8, and Tregs (by DS for Foxp3 and CD4)
 - Myeloid derived suppressor cells (MDSC)
- PBMCs and sera at 4 time points (week 0 (prior to vaccination), week 3 (prior to BCG), week 8 (prior to last BCG), and week 17 (end of treatment)):
 - Flow cytometry for 23 markers (e.g. CD4, CD8, Tregs, MDSCs, and NK)
 - In HLA-A2 allele patients, ELISPOT for CD8 T-cell responses for CEA and MUC-1 and cascade antigen Brachyury
 - If sufficient sample available, CD4 specific responses to CEA will be measured
 - Study sera for Ab to CEA
- Urine
 - Check levels of urinary cytokines at week 3 and week 5 to assess cytokine production in response to BCG and PANVAC therapy
- PPD
 - See if any correlation with immunologic response
Benefits of Immunotherapy

• Ability to work in a variety of different cancers
• No cross-resistance to chemotherapy or XRT
• Multiple killing mechanisms
• Durable responses if patient responds
 – Potential for memory and single lifelong administration

Schlom et al. JNCI 2012.
MOLECULAR TARGETED PHOTOIMMUNOTHERAPY (PIT)
Precision Targeted Therapy

PROS
- Durable remission metastatic bladder noted after treatment with everolimus based on fs mutation in TSC1
 - [Pre-treatment](#) [3-mo. interval](#)
- NY Times: young hematologist (Dr. Wartman) had ALL with FLT3 on whole-genome sequencing now in remission on sunitinib
- Certain lung cancers have an EGFR mutation making them susceptible to respond to monoclonal antibodies

CONS
- Not every patient can currently undergo whole genome sequencing
- Weak single-agent activity
- Heterogeneity in response to targeted therapy regardless of target expression
- Multiple downstream pathways

Photodynamic Therapy (PDT) in Bladder Cancer

- PDT utilizes a photosensitizer dye which targets the tumor. It absorbs light from an external source and delivers that energy to produce cytotoxic reactive oxygen species which results in necrosis and apoptosis.

- In standard photodynamic therapy, the sensitizer is instilled or injected which can lead to diffuse penetration of bladder tissue or nonspecific binding of dye.
 - **SIDE EFFECTS** (e.g. severe bladder contractures, cutaneous photosensitization)

Table 5. Previous clinical studies of PDT for bladder cancer

<table>
<thead>
<tr>
<th>References</th>
<th>No. Pts</th>
<th>Photosensitizer</th>
<th>Light Dose (J/cm²)</th>
<th>Early (%)</th>
<th>Late (%)</th>
<th>AEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neevoy et al.¹⁰</td>
<td>22</td>
<td>Photofrin II</td>
<td>15-20</td>
<td>83.30</td>
<td>30</td>
<td>Irritating LUTS, bladder shrinkage</td>
</tr>
<tr>
<td>D’Hallewin and Baert²⁵</td>
<td>18</td>
<td>Photofrin II</td>
<td>75, 100</td>
<td>Not applicable</td>
<td>60</td>
<td>Bladder capacity loss</td>
</tr>
<tr>
<td>Uchitayashi et al.⁵⁶</td>
<td>23</td>
<td>Hamatoporphyrin derivative</td>
<td></td>
<td>73.50</td>
<td>22</td>
<td>Skin photosensitivity, transient bladder capacity decrease</td>
</tr>
<tr>
<td>Walther et al.²⁷</td>
<td>20</td>
<td>Photofrin II</td>
<td>5.1-25.6</td>
<td>45</td>
<td>20</td>
<td>Asymptomatic reflux, bladder contraction, fibrosis</td>
</tr>
<tr>
<td>Neevoy et al.¹⁷</td>
<td>58</td>
<td>Photofrin</td>
<td>10-60</td>
<td>75-84</td>
<td>53</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Mavvek and Oganò²⁸</td>
<td>34</td>
<td>Porphyrin sodium</td>
<td>5-10</td>
<td>56</td>
<td>44</td>
<td>Bladder contracture</td>
</tr>
<tr>
<td>Berger et al.²⁹</td>
<td>31</td>
<td>5-ALA</td>
<td>30-50</td>
<td>Not applicable</td>
<td>52</td>
<td>Dysuria due to urinary tract infection, hematuria</td>
</tr>
<tr>
<td>Waidelich et al.³⁰</td>
<td>11</td>
<td>5-ALA</td>
<td>100</td>
<td>Not applicable</td>
<td>46</td>
<td>Transient frequency, urgency</td>
</tr>
<tr>
<td>Lee et al.¹¹</td>
<td>5</td>
<td>Fotolon (intravenous)</td>
<td>10 (intravenous), 24 (intravesical)</td>
<td>80 (6 mos)</td>
<td>60</td>
<td>Vesicoenteric fistula</td>
</tr>
<tr>
<td>Badar et al.³⁰</td>
<td>17</td>
<td>HAL</td>
<td>25 (PDT 1), 50 (PDT 2), 100 (PDT 3)</td>
<td>52.9 (6 mos)</td>
<td>11.8 (21 mos)</td>
<td>Irritative bladder symptoms, infection, gross hematuria</td>
</tr>
<tr>
<td>Present series</td>
<td>34</td>
<td>Radachlorin</td>
<td>15</td>
<td>90.9 (1 yr)</td>
<td>64.4 (2 yrs)</td>
<td>Irritative bladder symptoms, infection, hematuria</td>
</tr>
</tbody>
</table>
Molecular Targeted Photoimmunotherapy

- Photosensitizer: phthalocyanine dye, IR700, that uses near infrared light (NIR) conjugated to monoclonal antibody (mAb)

- Induces cell death after irradiating mAb-IR700-bound target cells with exposure to NIR

- Non-toxic except at thermal doses

- Hydrophilic dye will not associate with CM

Our Target: EGFR (epidermal growth factor receptor)

- EGFR amplified in UC
- Overexpression of EGFR is an independent predictor of decreased survival and stage progression in bladder cancer

Chaux et al. Hum Pathol. 2012 Oct;43:1590
Method: Expression in various Bladder Cancer cell lines analyzed using flow cytometry. Anti hEGFR – PE (Abcam) was used for these experiments. Rat IgG2a, kappa Mab-PE (Abcam) was used as a Isotype control.
• Two cell lines UMUC-5 (high expression of EGFR) and TCCSUP (low-moderate expression of EGFR) are used for further analysis. Breast cancer cell line MDA-MB-453 or Balb-3T3 (no expression of EGFR) are used as a negative control in certain assays.
Gel Electrophoresis and Infrared Imaging of Panitumumab and Conjugated Panitumumab

148 KDa

Marker IRDye700 Panitumumab Pan-IRDye700 IRDye700 Panitumumab Pan-IRDye700

SDS-PAGE Infrared
“Home-grown” Apparatus
Balb 3T3 – EGFR negative control

No light

Light (4J)
UMUC5 – EGFR ++ bladder cancer cell line

Untreated

Pan

Pan-IR700

Blocking

No light

Light (4J)
Trypan Blue Exclusion Assay

Photoimmunotherapy of UMUC5 bladder cancer cells

Percentage of viable cells by trypan blue exclusion

- Control
- Panitumumab
- Pan+IR700
- Blocking condition

No Light Light (4J)
Necrosis is Potential Mechanism of Death: Annexin-V/PI Staining 60 min After PIT
Necrosis is Potential Mechanism of Death: Annexin-V/PI Staining 15 min After PIT

Untreated

4 J/cm²

Pan 10µg

4 J/cm²

Pan IR700 10µg
Caspase Assay: 15 min after NIR Exposure
In vivo PIT effects

Graphs and Images:
- **IR700 vs. IR700/White**
 - Pre, Day0, Day2
 - NIR light

Graphs Details:
- **Survival**
 - Time after Ab-IR700 injection (days)
- **Tumor volume (mm³)**
 - Time after Ab-IR700 injection (days)

Legend:
- No treatment
- Pan 300 μg iv, no PIT
- Pan-IR700 300 μg iv, no PIT
- No Mab, PIT 30 J/cm²
- Pan-IR700 300 μg iv, PIT 30 J/cm²

References:
Mitsunaga, Kobayashi, Nature Med 2011/12
Summary of PIT and Future Directions

- PIT platform works with EGFR based conjugate in EGFR expressing cell line
- In lines with less EGFR expression, increased energy can increase efficacy
- Mechanism is likely necrosis
- Current: Orthotopic bladder cancer model with UMUC-5
- Future: Conjugate other monoclonal antibodies targeting other receptors present in bladder cancer (FGFR3, MET, HER2, AXL) and Clinical Trial

→ Characterize Tumor Surface Receptor Expression and Conjugate Target-specific mAB-IR-700 and Instill in Bladder After Resection of Tumor
MET and AXL Expression in Cell Lines

Met Expression in Bladder Cancer Cell Lines

AXL Expression in Bladder Cancer Cell Lines
Other Projects

- High throughput screening of bladder cancer cell lines against 1900+ compounds

- Y-specific gene, SMCY, may be associated with male tumors and is associated with histone de-methylation

- IL-12/chitosan intravesical therapy
Conclusions

- Bladder cancer is common and has poor survival rates for non-localized disease
- Therapy requires surveillance, intravesical therapy, TURBT, surgery, radiation, chemotherapy
- Even though localized disease has good prognosis, recurrence is a problem making bladder cancer most expensive cancer
- Surgery evolving but still high rate of complications
- No new FDA-approved drugs in >20 years!
Conclusions

• PANVAC trial is currently open
 – 4 patients enrolled
 – Waiting for BCG to enroll more patients!
 – Greatly indebted to Day Hospital RNs for getting this trial off the ground!

• Molecular-targeted PIT has potential for effective treatment for non-localized disease and is translatable! (VPL better?)

• Other new potential intravesical agents may be identified from our screening project
Evolving Bladder Cancer Program

• Establishing a multi-disciplinary team that will see complex patients together:
 – Deborah Citrin, MD – Radiation Oncology
 – Andrea Apolo, MD – Medical Oncology

• Building a dream team:
 – Patient care coordinator
 – Nurse practitioner
 – Research nurse
 – Urologic oncology fellow
 – Data manager
 – Tissue procurement personnel
Acknowledgments

Bladder Cancer group
Quentin Li
Reema Railkar
Iawen Hsu
Srinivas Vourganti
Sam Brancato
Michael Weintraub
Camila Chile
Keidren Lewi
Adam Metwalli
Yvonne Wall
Sally Fowler
Becca Dolan
Martha Ninos
Geri Hawks
Donna Drake
Robert Worrell
Cathy Vocke

UOB Family
Len Neckers
Don Bottaro
Laura Schmidt
Mehdi Mollapour
Young Lee
Fabiola Cecchi
Carole Sourbier
Chris Ricketts
Peter Pinto
Ram Srinivasan

Other UOB Clinical Fellows and the rest of the Urologic Oncology Branch!

Surgical Pathology
Maria Merino
Karlena Lara-Otero

Other Collaborators
Jeff Schlom
James Gulley
Brad Wood
Jane Trepel
Craig Thomas

Molecular Imaging Group
Peter Choyke
Hisitaka Kobyashi
Kohei Sano

Bladder Multi-Disciplinary Team
Andrea Apolo
Deborah Citrin

Marston Linehan

UOB Support
Jennifer Munsey
Georgia Shaw