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Rationale and Objectives. A new classification system for colonic polyp detection, designed to increase sensitivity and
reduce the number of false-positive findings with computed tomographic colonography, was developed and tested in this
study.

Materials and Methods. The system involves classification by a committee of neural networks (NNs), each using largely
distinct subsets of features selected from a general set. Back-propagation NNs trained with the Levenberg-Marquardt algo-
rithm were used as primary classifiers (committee members). The set of features included region density, Gaussian and
mean curvature and sphericity, lesion size, colon wall thickness, and the means and standard deviations of all of these
values. Subsets of variables were initially selected because of their effectiveness according to training and test sample
misclassification rates. The final decision for each case is based on the majority vote across the networks and reflects the
weighted votes of all networks. The authors also introduce a smoothed cross-validation method designed to improve esti-
mation of the true misclassification rates by reducing bias and variance.

Results. This committee method reduced the false-positive rate by 36%, a clinically meaningful reduction, and improved
sensitivity by an average of 6.9% compared with decisions made by any single NN. The overall sensitivity and specificity
were 82.9% and 95.3%, respectively, when sensitivity was estimated by means of smoothed cross-validation.

Conclusion. The proposed method of using multiple classifiers and majority voting is recommended for classification
tasks with large sets of input features, particularly when selected feature subsets may not be equally effective and do not
provide satisfactory true- and false-positive rates. This approach reduces variance in estimates of misclassification rates.
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Computed tomographic (CT) colonography as an alterna-
tive colon cancer screening technique has progressed rap-
idly over the past 6 years (1). Colon cancer remains a
serious risk, affecting approximately 6% of Americans

during their lifetime. Total colon evaluation with widely
accepted methods such as barium enema studies and con-
ventional colonoscopy can identify most polyps before
they progress to cancer. Nevertheless, a large portion of
the population older than 50 years do not undergo screen-
ing because they fear the discomfort of these screening
tests. The relatively high cost of the examination and dif-
ficulties in reaching the most distant parts of the colon are
also problems with the standard test, conventional
colonoscopy. For these reasons, there is a need to develop
accurate, less invasive, relatively inexpensive, and poten-
tially more powerful screening methods, such as CT
colonography.
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Computer-aided detection may improve the accuracy
and reproducibility of CT colonography (1). Such detec-
tion for CT colonography is at an early stage of develop-
ment. One important goal of computer-aided detection is
to optimize the classification scheme employed. The clas-
sification method for colonic polyps discussed in this arti-
cle combines two techniques: a shape-based primary clas-
sifier and a higher-level classifier based on an aggregate
of back-propagation neural networks (NNs) (2). Three-
dimensional shape plays a key role in human visual per-
ception of objects in general and in colonic polyp detec-
tion specifically. The shape-based classifier for primary
lesion detection eliminates up to 97% of the colonic sur-
face from consideration (3). The remaining 3% represents
on average 65 candidate lesions per colon, which include
a mixture of real polyps (nearly 100% of the true polyps
being included) and false-positive detections. These can-
didate polyps are thus suitable for further processing with
a higher-level classification scheme.

While shape criteria are a source of primary features
(variables used for prediction) known to be clinically use-
ful, other features considered in the diagnosis of polyps
are more difficult to quantify. In this situation it is helpful
to base decisions on as many features as possible. In our
study, we tested the effectiveness of an aggregate com-
mittee, or voting bloc, of several NNs for classifying pol-
yps. Each committee member used a different set (collec-
tion) of four features selected from the general list of up
to 23 features. A decision for a test polyp was based on
the majority vote of the committee members. We hoped
to achieve greater parallelism and higher sensitivity and

specificity rates with this method than had been achieved
previously.

MATERIALS AND METHODS

Shape Classification

The first step of the classification algorithm is meant to
eliminate most of the colonic surface, which is unlikely to
contain true polyps. It involves analyzing the geometric
shape features of the colonic surface, such as curvature
and sphericity. Although colonic polyps may vary in size
and shape (eg, pedunculated, hyperplastic, and sessile
[4]), most appear as bumps on the computer-rendered
image of the colon surface. Examples of the different
polyp shapes are shown in Figure 1.

The algorithm first selects lesions that have elliptical
curvature and sphericity above certain thresholds. Then
other important characteristics are calculated, such as size,
region density, and wall thickness, which improve speci-
ficity without serious loss in sensitivity.

Aggregate of Back-Propagation NNs
The next step in the classifier involves various texture,

density, and geometric parameters of the lesions, colon
surface, and wall, as well as their means and standard
deviations. The complete collection of additional variables
includes 23 features, some of which had proven useful for
classification in earlier work (3) and some of which we
added for this study (Fig 2). On the one hand, the inclu-
sion of more features allows more precise discrimination
between true- and false-positive detections. On the other,

Figure 1. (a) Sessile polyp. (b) Polyp on a
fold. (c) Pedunculated polyp lying on its side.
(d–f ) Three-dimensional images of the same
polyps.

Academic Radiology, Vol 10, No 2, February 2003 AUTOMATED POLYP DETECTOR FOR CT COLONOGRAPHY

155



using too many features in any single classifier (NN, clas-
sification tree, or other scheme) unacceptably increases
the complexity of the model. With NNs, the number of
hidden neurons (2) for an NN classifier corresponds to the
dimensionality of the feature space. Keeping this dimen-
sionality small effectively controls the model’s complex-
ity and increases the accuracy of parameter estimation
(2,5). Here we suggest breaking the set of features into
subsets and using a combination of several simple classi-
fiers, each processing a small number of input features, so
that each classifier works inside a reduced feature space.
This approach combines the advantages of using the large
number of features and keeping the feature space small
for each NN in the committee. The entire polyp detection
scheme is depicted in Figure 3.

A committee approach to classification is known to
produce generally improved results, provided that error
rates are less than 50% for each member of the commit-
tee. A simple example makes this point (6). Consider a
collection of 21 classifiers, each with an error rate of 0.3

(or a sensitivity of 70%). With the standard binomial
probability table, one can verify that if the classifiers are
statistically independent, the probability is 0.026 that 11
or more of them will make a mistaken classification (sen-
sitivity, 97.4%). Therefore, with even moderately efficient
classifiers that are at least approximately independent, the
classification error rate can drop dramatically. Choosing
relatively distinct, disjoint feature sets from which to gen-
erate individual classifiers is one way to produce rela-
tively independent classifiers and thereby reduce the com-
mittee error rate. Such selection is an ad hoc process. In
this study, the process was guided in part by clinical in-
sight and our experience with pairwise measures of inde-
pendence among features. It might be desirable to make
these selections with more refined methods, such as so-
called genetic or evolutionary selection algorithms (7).

The feature space F is divided into M subsets, each
containing N features:

F f �
f11

f12

· · ·
f1N

� , �
f21

f22

· · ·
f2N

� · · ·�
fM1

fM2

· · ·
fMN

� . (1)

These subsets are the input for the component NN classi-
fiers. The features may be repeated in the different sub-
sets, so many fairly disjoint combinations of them may be
used. The individual NN classifiers are multilayer per-

Figure 2. Features used for computer-aided detection with CT
colonography. The 12 features used in the final NN committee are
indicated by an asterisk (�). The feature that had two input nodes
in the large single NN, giving it added weight, is indicated by a
dagger (†).

Figure 3. Polyp detection scheme.
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ceptrons trained with a back-propagation algorithm. Each
NN consists of an input layer with N input neurons, a
hidden layer with 2q hidden neurons (where q is an inte-
ger), and an output neuron. The hidden neurons are con-
nected to all input neurons and an output neuron, as de-
picted in Figure 4. The polyp data set contains K samples.
M feature vectors of size N are calculated for each polyp.
The output Ojk of the jth hidden neuron when kth sample
X is presented is calculated as follows:

Ojk � �� �
i�1

N

wijXik � bj� , (2)

where wij � the weight of connection, bj � the bias of
connection, j � 1, . . . , 2q, and � � a sigmoid transfer
function. In our experiments, the best results and fastest
convergence were obtained for q � 2.

The output of the network gk when the kth sample is
presented is calculated as follows:

gk � �
j�1

2q

wj
out � Ojk � bout , (3)

where wj
out, bout are the weights and the bias of the output

neuron connections to all neurons of the hidden layer.
The goal of the training process is to have the NN out-

put equal to �1 when the sample presented to the input
layer represents a false-positive detection and equal to �1
when a true-positive detection is presented. Let V denote
the weights and the biases of the NN: V � V (wij, bj, wj

out,
bout). Then the risk functional is the mean-squared error
(MSE) function:

R �

�
k�1

K

�g�Xk, V� � yk�
2

K
, (4)

where Xk(ƒ), yk � the kth sample, yk � 1 if Xk(ƒ) corre-
sponds to a true-positive detection, and yk � �1 if Xk(ƒ)
corresponds to a false-positive detection. We used the
Nguyen-Widrow method (8) to initialize V. An advanced
nonlinear Levenberg-Marquardt optimization algorithm
(9) was used to train the weights and biases V. We used
MatLab computing software (The MathWorks, Natick,
Mass) for NN simulation and training. Training was itera-
tive and stopped when the desired MSE was reached.

Voting System for NN Committee
The classification model containing trained NNs uses

weighted voting of all NNs in such a way that those with
the weakest performance contribute least to the final deci-
sion. The weight attached to each NN is based on the
numbers of false-positive and false-negative responses
found when that trained NN is applied to both training
and test sets. The weight (P) is calculated as follows:

P �
1

1 �
k1 � Fntr

N1
�

k2 � Fntest

N2
�

k3 � Fptr

N3
�

k4 � Fptest

N4

, (5)

where ki, i � 1, . . . , 4, are coefficients adjusted accord-
ing to clinical needs. For better sensitivity, k1 and k2

should be higher than k3 and k4, and if specificity is more
important for a particular study, then k3 and k4 should be
higher. N1 and N2 are the numbers of polyps in the train-
ing and test sets, respectively, and N3 and N4 are the cor-
responding numbers of nonpolyps. Fntr and Fntest are the
numbers of false-negative responses found when the
trained NN is applied to training and test sets, respec-
tively, and Fptr and Fptest are the corresponding numbers
of false-positive responses.

In the results we describe, we used a simple threshold
scheme: If a given NN had P greater than the threshold,
then it was included in the committee; if its P was at or
below the threshold, it was dropped. This procedure re-
duced the number of features finally used in the winning
subsets; that is, the starting set of 23 features was
trimmed to a smaller set of 12 features that was used in
the final committee of NNs (Fig 2). The weights of all
included NNs were then set to �1, and simple majority

Figure 4. Diagram of the NN.
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vote then followed. We do not assert that our weighting
scheme is statistically optimal, and many other choices
are possible.

To get the best estimates of the NNs’ weights (P) and
to assess feature selection, we used a bootstrap smoothing
of the basic leave-one-out cross-validation method (10).
This approach gives error estimates with relatively low
bias and reduced variance, compared with a nearly unbi-
ased but highly variable traditional cross-validation (either
leave one out or leave k � 1 out).

The smoothed leave-one-out method was implemented
as follows. A single true polyp was chosen from the list
of true polyps K in the training set. From the remaining
true polyps K � 1, a set of cases K � 1 was drawn,
where drawing was done with replacement; this formed a
single bootstrap draw. From the nonpolyps, a drawing
was done with replacement to obtain L cases. The boot-
strap set of K � 1 drawn true polyps and L nonpolyps
was a new training set, which we used to train the eight
NNs. The committee of these eight networks then voted
on the initially selected polyp, and we recorded the result.
This process was repeated M � 10 times. Next, the cho-
sen true polyp was replaced and another true polyp was
selected. The bootstrap drawing was repeated, and the
votes were collected. In this way each of K � 21 polyps
in our data set was used M � 10 times to test the NNs
trained on the 10 bootstrap replications of the remaining
20-polyp training sets. The final error rate estimates and
the weight for each NN (value of the P function above
and the threshold value of P) were obtained by averaging
over all 210 tests. The NN committee classification deci-
sion D was calculated as follows:

D � �
i�1

M

giPi, (6)

where gi is the output of the ith NN, Pi is the ith NN
weight, and M is the number of NNs in the committee.

Experimental Data
The polyp database used for training and test purposes

in our experiment was obtained from 80 studies that in-
cluded supine and prone CT colonographic images of 40
patients (11). Informed consent was obtained from the
patients. CT imaging was performed with Lightspeed
scanners (GE Medical Systems, Milwaukee, Wis) at the
following parameters: 120 kVp, 50 mAs (mean), field of

view to fit (38–46 cm), 5-mm collimation, high-quality
mode, and 3-mm reconstruction interval (2-mm overlap).
We performed colonoscopies on the same patients to ver-
ify the results of CT scans and obtain the coordinates of
true-positive findings. Twenty-one polyps (0.5–2.5 cm)
and 4,996 polyplike sites were selected with our endo-
scopic research software (3) according to the shape crite-
ria.

RESULTS

We used the smoothed leave-one-out validation tech-
nique described earlier in this article to analyze the sensi-
tivity, specificity, and variability of an NN committee and
a single NN, at each of 22 different MSE levels, with log
MSE from �0.1 to �2.2. Log MSE is used as a stopping
criterion in NN optimization. We used a range of log
MSE values to guide in the training of NNs with optimal
sensitivity and specificity. To reduce the computational
cost of the analysis, we devised a committee that con-
sisted of eight NNs with the highest weights (according to
the threshold method described previously). The final
committee used only 12 input features, combined in eight
different sets of four features each.

Analysis has shown that at high MSE levels, when log
MSE is greater than �0.4 but less than �0.1, a single
average NN and an NN committee classifies the majority
of samples as nonpolyps, giving high specificity but very
low sensitivity. As can be seen from Figure 5, the com-

Figure 5. Specificity and sensitivity of the cross-validated NN
committee (black and gray solid lines, respectively) compared
with the specificity and sensitivity of the average single NN (black
and gray dotted lines, respectively).
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mittee specificity is always higher than the average speci-
ficity of any single NN, at each MSE. The committee
sensitivity is higher than that of an average single NN
when log MSE is at most �0.3.

Sensitivity reaches its maximum for single NNs and an
NN committee at a log MSE level of �0.7. At this point
the committee sensitivity estimated with the smoothed
leave-one-out method is 82.9%, while the average sensi-
tivity of the eight single NNs is 76.0% (Table). The spec-
ificity of the NN committee at this same log MSE level is
2.6% higher than that of the average single NN, yielding
a 36% improvement in the number of false-positive re-
sults per study (2.9 vs 4.6). We also analyzed the perfor-
mance of a single large NN with 12 input features (all the
features used in eight smaller NNs composing the com-
mittee [Fig 2]). The sensitivity, specificity, and false-posi-
tive rate (per study) for this single NN are given in the
far-right-hand column of the Table. The sensitivity for
this NN is less impressive than the average for the
smaller NNs that use only four features each; all perfor-
mance indicators for this NN are much less impressive
than performance indicators for the NN committee. In
particular, the standard deviation for specificity is 0.2%
for the committee 0.6% on average for the single net-
works, and 0.7% for the big NN. Similarly, the standard
deviation for sensitivity was 6.0% for the committee,
7.4% on average for the single networks, and 8.8% for
the big NN.

We found that both the NN committee and the single
NN classification models become overtrained with log
MSE levels lower than �0.7; sensitivity rates decreased
rapidly. This is the well-known problem of overfitting, in

which the classification model works nearly perfectly on
the training set but gives poor results on a test set.

DISCUSSION

In this study, we found that a committee of NNs im-
proved sensitivity and specificity by 6.9% and 2.6%, re-
spectively, compared with any single NN. The result was
a 29% reduction in false-negative detections and a 36%
reduction in false-positive detections.

To reduce the training time, we used a smaller training
set of 100 nonpolyps and 21 true polyps. This was neces-
sary because the intensive validation scheme that pro-
vided the improved estimates of error rates was itself
computationally expensive: In our study, eight NNs (each
based on four of 12 features, with some features being
used in more than one NN) were trained 210 times, each
to 22 different MSE levels, for validation purposes and
then used to select a final committee. For clinical applica-
tions, however, each NN in the committee has to be
trained just once. Since this takes less than a minute on a
Pentium III desktop computer, an arbitrarily large training
set can be used to reach the required sensitivity and spec-
ificity. In other words, only the validation process used
here was computationally expensive; application of the
committee scheme itself was not expensive.

Our results lead us to recommend the NN committee
for classification of polyps. We observed that the
smoothed bootstrap validation approach demonstrated av-
erage improvements of 6.9% in sensitivity and 2.6% in
specificity. The problem of evaluating statistical differ-
ences between competing classification rules has been

Performance of the NN Committee and the Average Single NN at Log MSE � �0.7

Single NN with Four Input Nodes

NN
Committee

Single NN,
13 Input
Nodes

NN
1

NN
2

NN
3

NN
4

NN
5

NN
6

NN
7

NN
8 Average

No. of false-positive
results per study 4.1 4.4 4.6 4.1 6.1 4.3 5.0 3.8 4.6 2.9 4.5

Specificity (%) 93.5 93.0 92.7 93.4 90.2 93.2 92.0 93.9 92.7 95.3 92.7
Specificity internal

STD (%) 0.7 0.7 0.4 0.4 0.8 0.6 0.6 0.5 0.6 0.2 0.7
Sensitivity (%) 81.4 74.8 75.2 80.5 59.1 78.6 80.5 77.6 76.0 82.9 57.6
Sensitivity internal

STD (%) 6.1 8.4 8.6 6.9 10.1 7.5 6.5 5.0 7.4 6.0 8.8

Note.—For each bootstrap sample (draw with replacement), a single NN makes a classification on a leave-one-out case. The average
error over the 21 true polyps is found. This is done for each of 10 bootstrap draws and the standard deviation (STD) of these 10 error
rates is what we call the internal STD. This is also true for the committee and the large single NN having 13 input nodes.
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discussed by Dietterich (12), who also suggested an alter-
native—five splits of the data into two subsets, with re-
peated training on one half and testing on the other.
While the results Dietterich described appear promising,
this approach was deemed inappropriate for our data,
since training on a data set of 10 cases is certain to lead
to low sensitivity and thus would be an inefficient test of
any procedure, committee, or single NN.

Our numeric experiments revealed that the committee
approach always enjoyed higher sensitivity than any sin-
gle best network, considered across the several log MSE
levels used in training. Equally important, the observed
false-positive rate per patient for the committee was 2.9,
while it was 4.6 for the average single network; we be-
lieve this improvement is clinically meaningful. To sum-
marize, results of our investigation confirm that use of a
committee of classifiers such as NNs may bring classifi-
cation results that are noticeably improved over those
achievable with use of a single classifier.
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