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ABSTRACT 

 

An automatic method to segment colonic polyps from CT colonography is presented. The method is based on a 
combination of knowledge-guided intensity adjustment, fuzzy c-mean clustering, and deformable models. The input is a 
set of polyp seed points generated by filters on geometric properties of the colon surface. First, the potential polyp region 
is enhanced by a knowledge-guided adjustment. Then, a fuzzy c-mean clustering is applied on a 64*64 pixel sub-image 
around the seed. Fuzzy membership functions for lumen air, polyp tissues and other tissues are computed for each pixel. 
Finally, the gradient of the fuzzy membership function is used as the image force to drive a deformable model to the 
polyp boundary. The segmentation process is first executed on the 2D transverse slice where the polyp seed is located, 
and then is propagated to neighboring slices to construct a 3D representation of the polyp. Manual segmentation is 
performed on the same polyps and treated as the ground truth. The automatically generated segmentation is compared 
with the ground truth segmentation to validate the accuracy of the method. Experimental results showed that the average 
overlap between the automatic segmentation and manual segmentation is 76.3%. Given the complex polyp boundaries 
and the small size of the polyp, this is a good result both visually and quantitatively. 

Keywords: Colonic polyp segmentation, fuzzy c-mean cluster, deformable model 

 

1. BACKGROUND AND INTRODUCTION 

 

CT colonography has been used for detection and screening of colonic cancers. The purpose of the test is to locate and 
identify the polyps on the colon wall. Several systems are under development to bring Computer Aided Detection of 
colonic polyps into clinical use. Most of them use geometric features on colon surfaces and/or volumetric properties near 
the surface to assist the detection. While current results seem promising, there are some arguments that better features 
need to be computed for better classification. Polyp segmentation is imminent since it will provide the entire voxel set of 
the polyp, which can be used to quantify the characteristics of the polyp. Several comprehensive volumetric features and 
statistical analysis can be obtained, such as the density, the volume and dimension of the polyp, and its relationship with 
surrounding tissues. Polyp segmentation can also be directly applied in the detection of polyps. If the segmentation 
process fails at a polyp candidate, it may indicate that the detection is a false positive. Once the segmentation is obtained, 
additional analysis such as texture analysis can be performed. We define the segmentation of a polyp to be a surface that 
encloses the polyp and its interior voxels. On a 2D transverse slice, it is a closed polygon (contour) representing the 
boundary of the polyp. 

Colonic polyp segmentation is a complex task for several reasons. First, polyp shapes are irregular. Second, the 
sizes of polyps vary greatly. Third, the surrounding regions are complex. Figure 1 shows some typical polyp examples in 
CT colonography. Figure 1(a) shows a classic medium size round shape polyp protruding to the colon lumen. This type 
of polyp is relatively easy to segment by analyzing edgels in the image and the shape of polyps. Figure 1(b) is a tiny 
polyp only a few pixels in size, and Figure 1(c) is a flat polyp. Figure 1(b) and 1(c) are easy to miss during CT 
colonographic exams. Figure 1(d) is a polyp on a fold, and Figure 1(e) is a polyp connecting to a fold. It should be noted 
that sometimes the shape of a fold is very similar to that of a polyp in CT colonography. Figure 1(f) and 1(h) are big 
masses, which tend to have irregular shape and occupy most of the local colon segment and may be difficult to get 
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complete regions just based on geometric features. In Figure 1(g) and 1(h), the polyp is in a very complex surrounding 
region, and no obvious boundary can be identified. A single shape or densitometry template is not sufficient to describe 
all polyps in Figure 1. A more sophisticated method utilizing both the shape and densitometry information is necessary 
for successful colonic polyp segmentations. The boundary between the polyp and the lumen is relatively easy to locate 
due to the large intensity discrepancy between these two regions. But the boundaries between polyp tissues and non-
polyp tissues are not very obvious. Sometimes the polyps are connected to other objects in the images, such as in Figure 
1(e), 1(f) and 1(h). Special image processing procedures need to be applied in order to successfully locate and separate 
them. 

There are several existing methods for colonic polyp segmentation. Yoshida and Nappi et al [1, 2]proposed a polyp 
segmentation method by means of hysteresis thresholding with use of some volumetric features. They first located the 
voxels with low curvedness values and high shape index (cup shape) and then clustered them to segment the polyp. 
Their method doesn’t work well for small polyps and flat polyps since there is an insufficient number of voxels with low 
curvedness values and high shape index for clustering. Their method may also have trouble in segmenting big masses 
where the shape of polyps are usually irregular and voxels in the polyp region may not have similar curvedness and 
shape index to be clustered together. Jerebko et al. [3] used Radon transformation and Canny edge to detect polyp 
boundaries. They first used Canny edge detectors to locate the polyp-lumen boundary, and used Radon transformation to 
identify round shape polyps. In the existing literature, no segmentation algorithm has been reported to robustly segment 
all types of polyps listed in Figure 1. The goal of our investigation is to develop an automatic and robust method that can 
accurately segment most existing polyps which can be manually segmented by an expert. We are not tackling those 
polyps that can not even be segmented by a human. 

The rest of the paper is organized as follows. Section 2 introduces our method. Section 3 presents our experimental 
data and results. Finally, Section 4 provides some discussions and future plans. 

 

 

 

 

(a) (b) (c) (d) 

(h) (g) (f) (e) 

Figure 1. Polyp examples in CT colonography 
(a) Perfect medium round polyp; (b) Tiny polyps; (c) Flat polyps; (d) Polyp on fold; (e) 
Polyp connected to a fold; (f) Big Mass; (e) Blurry boundary; (h) Complex scene  
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2. METHODS 

 

Our approach is a combination of fuzzy clustering and deformable models. The method is also guided by prior 
knowledge about the colonic polyp. Both intensity distribution and shape properties are utilized. Our method is 
illustrated in Figure 2. First CT colonography is performed on high risk patients undergoing colon cancer screening. The 
colon surface is extracted using an existing software package. [4, 5] For each point on the surface, geometric and local 
volumetric properties are analyzed and filtered to get a set of polyp candidate seeds. The candidate pool is usually a large 
set, including true positive and false positive detections. Multiple detections may occur on a single polyp. The 
segmentation algorithm takes the candidate seed as the input. Ideally, at the location of true positive detections, an 
accurate segmentation should be obtained, whereas at the location of false positive detections, no segmentation should 
be found. From our observation, polyp detection is a local operation, i.e. only a local region around the polyp need be 
examined to identify the polyp. Therefore, a 64*64 pixel sub-image centered at the candidate seed is first obtained. All 
following operations are conducted on the sub-image to reduce the computational time and artifacts from un-related 
tissues. First, a knowledge-guided intensity adjustment procedure is conducted to enhance potential polyp regions. Then, 
a fuzzy c-mean clustering is applied to compute the membership values of lumen, polyp tissue and non-polyp tissue for 
each voxel in the sub-image. From the clustering, we can roughly classify every pixel in the image and get the 
approximate region of the polyp. An initial deformable model is placed in the centroid of the initial region of polyp. The 
deformable model is then driven by the image force computed from the membership map of polyp tissues, together with 
an external balloon force and the intrinsic model force. After several iterations, the deformable model converges to the 
potential polyp boundary. Once the segmentation (a closed contour) is generated on one slice, the procedure is 
propagated to neighboring slices. The process is iterated until no segmentation can be found or the segmentations on 
adjacent slices are not continuous (the overlap is too small). At the end, all 2D segmentations are stacked up to build a 
3D segmentation. 

The details of our approach, especially the knowledge guided intensity enhancement, the fuzzy clustering, and the 
deformable model technique will be elaborated in following subsections.  

 

2.1 Knowledge guided intensity adjustment 

Given a CT colonography, sometimes it is difficult to differentiate polyp tissues and non-polyp tissues based on 
their CT numbers (image intensity) (see figure 3a). However, assisted by knowledge of surrounding regions and shape of 
polyps, an expert is able to identify the polyp. Colonic polyps usually appear as protrusions from the colon wall into the 
lumen air. This knowledge can be used to assist the polyp segmentation.  

We designed a knowledge guided intensity adjustment method to enhance the potential polyp region in CT 
colonography. Two pieces of knowledge have been used in our method: 

1) the polyp abuts the lumen air 

CT Colonography Surface based filter Polyp candidates Sub-images 

Knowledge 
guided intensity 
adjustment 

Fuzzy C-mean 
Clustering 

Active contour 
deformable 
models 

Segmentation 
propagation 

Figure 2 Colonic segmentation flow chart 
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2) the polyp-lumen boundary tends to have convex curvature 

In our method, first the iso-boundary between the lumen air and the colon wall is located. Since the lumen air has HU 
number around -1000 and the soft tissue has HU number larger than -500, the iso-boundary can be accurately locating 
using an iso-value of -700. The volumetric curvatures of the iso-boundary are computed using equation 1.  
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where κ is the volumetric curvature, fx, fy are first derivatives of the image intensity, fxx, fxy, fyy are second derivatives of 
the image intensity. Then the boundaries are categorized into three classes according to their curvatures: convex, flat, 
and concave. A threshold value of curvature (Cth) is supplied to classify different types of boundaries. The boundaries 
with curvature greater than Cth are concave boundaries, those with curvature smaller than –Cth are convex boundaries, 
and the rest are flat boundaries. Cth in our experiment is 0.15 pixel-1.  

Each pixel in the image is then given a score based on its relative location to the iso-boundaries. To assign the score 
to a pixel v, a set of evenly spaced rays are shot from v in different directions dk (see figure 3(b)). If the rays hit the iso-
boundary within a distance, some scores will be added to pixel v. The score of pixel v is given as 
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here the number of ray directions (Nd) used in our method is 24 (15 degree apart), and the distance s is the maximum 
diameter of a polyp (30 mm in our method). Under this scoring scheme, the pixel will be awarded a high score if it is 
next to convex boundaries, and will be panelized if it is not. The intensity of a pixel is then adjusted based on its score as 
follows: 

polyp 
non-
polyp 

polyp 
non-
polyp 

(a) (b) (c) 

Figure 3 Knowledge guided intensity adjustment 
(a) original image; (b) scoring of a pixel, arrows are the shooting directions, circles are hit points; (c) enhanced 
image 
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The intensity of pixel is increased if it is in a potential polyp region; otherwise, the intensity is decreased. 

Figure 3 shows the knowledge-guided intensity adjustment. Figure 3(a) is the original image, where polyp regions 
and non-polyp tissue region have very similar intensity values. Figure 3(b) is the illustration of shooting rays from a 
pixel to compute its score. Figure 3(c) is the enhanced image after the intensity adjustment. All following operations are 
performed on the enhanced image. 

 

2.2 Fuzzy C-mean clustering 

Fuzzy segmentation has been favored over hard segmentation in some medical image applications. In CT 
colonography, the shapes of colonic polyps are irregular and varied, and the surrounding regions are complex. There are 
partial volume effects due to the large slice spacing and image noise in soft tissues. Moreover, it is difficult to determine 
a threshold to differentiate the polyp regions and the non-polyp regions. We apply a fuzzy c-mean (FCM) clustering 
method to first classify pixels in the image into several tissue categories.  

FCM is a popular clustering technique used in non-supervised image segmentation for pixel classification and 
pattern recognition purposes. [6] In FCM methods, a set of tissue classes is first determined. Then each voxel is 
classified by computing its membership functions of the tissue classes according to its intensity. The value of 
membership functions is restricted to the range 0 to 1. The sum of all membership values over all classes for any voxel is 
1. The value of the membership function of one class indicates the likelihood of the pixel belonging to that class. Each 
tissue class has a centroid. The objective of FCM clustering is to find the membership functions for each pixel so that 
they are clustered around the centroid of each class. FCM can be written as the minimization of the following objective 
function: 
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here, Ω is the set of pixels in the image, N is the total number of tissue classes, uk(x) is the membership function value of 
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class k. The objective function is minimized when a large membership value of a class is assigned to a pixel when it is 
close to the centroid of that class. This is a non-linear problem and can be solved iteratively. During each iteration, a new 
set of membership functions and class centroids are computed. The following steps describe the FCM algorithm. 

1. provide the initial values for class centroids, ck, k=1..N 

2. compute the membership functions 
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3. compute the new centroid for each class 
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4. repeat step 2 and step 3 until the algorithm converges. Convergence is reached when the maximum change in 
the membership functions over all pixels between two iterations is less than a predefined small value. 
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We have defined three tissue classes in the polyp segmentation: lumen air, polyp tissues and non-polyp tissues. 
Three membership values are computed for each pixel. The initial estimate of each class centroid is derived from a priori 
knowledge about the intensity distribution and the seed position. The initial centroid for lumen air is a small value (e.g. 
−900 HU). The centroid of polyp tissues is given as the average intensity of the enhanced region in a neighborhood of 
the seed location, and that of non-polyp tissues is the average intensity of the non-enhanced region in the same 
neighborhood.  The neighborhood used in our method is a 15mm circle around the seed. 

Figure 4 shows some results of the fuzzy clustering. Figure 4a is the sub-image around a seed point. Figure 4 (b-d) 
shows the membership map for lumen air, polyp tissues and non-polyp tissues respectively. Brighter color in the map 
indicates higher membership value. Figure 5 are more examples of fuzzy clustering in various polyp shapes and 
surrounding regions. We use different color channels to represent different membership functions. Lumen air is 
represented in blue channel, non-polyp tissues in red channel, and polyp tissues in green channel. From the fuzzy 
clustering, we can approximately identify the polyp region. But there is still a lot of noise, and the boundaries between 
polyp tissues and non-polyp tissues are blurry. In the cases in Figure 4 and Figure 5(a-b), the fuzzy clustering provides 
very clear polyp regions. But in Figure 5(c) and 5(d), the region is very noisy, further processing is necessary. 

 

2.3 Deformable model 

The result of the fuzzy clustering can be converted to a hard segmentation by assigning each pixel to the class with 
highest membership value. But due to the noise and complexity in the scene, the result may not be a good segmentation. 
Furthermore, colonic polyps have irregular shapes and threshold-based segmentation usually results in discontinuous and 
unsmooth regions. Therefore, we developed a method to use the membership function as the force to drive a deformable 
model to obtain the polyp segmentation.  

Deformable models have been widely used in medical image segmentation. The active contour model is the most 
commonly used deformable model in 2D image segmentation. The active contour model was first introduced by Kass 
and Terzopoulos et al.. [7] Several researchers improved this method by adding features for different applications. 

(a) (b) (c) (d) 

Figure 5 More fuzzy clustering results 

(c) (b) (a) (d) 

Figure 4 Fuzzy clustering results 
(a) original image; (b) polyp tissue membership map; (c) non-polyp tissue membership map; (d) lumen air 

membership map 
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Cohen et al. [8]proposed a balloon force that significantly increases the capture range. The advantage of using active 
contour is that it ensures the smoothness and continuity of the boundary. The final representation of the contour is 
obtained based on different forces being used. 

Given an initial contour, several forces work together to drive the active contour to its destination. The forces that 
drive the active contour model can be expressed as:  

F = winFinternal +wim Fimage + wex Fexternal   (7)     

where Finternal is the spline force of the contour, Fimage is the image force, and Fexternal is the external force, and win, wim 
and wex are the respective weighting parameters. The internal force Finternal can be written as: 
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where x(s) is the curve representing the contour, )(' sx  is the first order derivative of x(s), and )('' sx  is the second order 

derivative of x(s). The spline force is composed of a first-order term controlled by α(s) and a second-order term 
controlled by β(s). The first-order term makes the contour act like an elastic membrane, and the second-order term 
makes it act like a thin rigid plate. By adjusting the weights α(s) and β(s), one can control the relative importance of the 
membrane term and the thin-plate term. α(s) and β(s) may be different at different values of s and at different iterations. 
In our implementation, we keep α(s) and β(s) constant for every s throughout the procedure, and α(s) = 0.5 and β(s) =1. 

(a) (b) (c) (d) 

Figure 6 Result of deformable models 
(a) image force map; (b) initial model; (c) after 5 iterations; (d) final results 
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The internal force is used to guarantee the smoothness and continuity of the contour, and to prevent the contour moving 
freely or bending too much. 

Fimage are forces derived from the image to attract the contour to image features such as edges, iso-values, or 
boundaries. In our method, we use the gradient of the membership function as the image force to attract the deformable 
contours to the polyp boundary, i.e.  

Fimage = )(gMax
v

Φ
   (9) 

where g
v

 is the gradient on membership function map, ( )
Φ

Max  is a maximum filter over a 5*5 template region. The 

maximum filter is similar to a median filter instead a maximum value is preserved. The maximum filter is applied to the 
gradient map to increase the capture range and reduce the noise.  . 

Fexternal are forces added by users for different applications. Similar to the balloon forces proposed by Cohen et al., 
[8] we added an external force to push the contour away from the centroid. The external balloon force at a vertex vx can 
be written as  
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where vc is the centroid of the current contour. The active contour converges when all forces reach a balance. Active 
contour models need an initial value close to the objective model.  

We apply the active contour model using the polyp tissue membership map. The initial contour is a half-pixel radius 
circle placed at the centroid of all pixels within a range of the seed point with polyp tissue membership values greater 
than 0.5. The weights for different forces are win=1, wim=1, and wex=1, respectively.  

Figure 6 shows some results. Figure 6a shows the image force generated by the gradient of the membership map. 
Figure 6b shows the initial contour. Figure 6c shows the intermediate state of the contour after 5 iterations, and figure 6d 
shows the final result. We can see that the deformable model converges to the polyp boundaries under the guidance of 
image and balloon forces. The internal forces keep the contour smooth and continuous. The interior regions of the polyp 
boundaries are filled and used as the representation for polyp segmentation. 

 

2.4 Segmentation propagation 

Colonic polyps are 3D objects. The technique presented in this paper is based on one 2D transverse slice. We 
designed a scheme to propagate the segmentation to 3D space. First the segmentation is computed on the slice where the 
seed point is located. Then the segmentation is propagated to adjacent slices (next slice and previous slice) using the 
centroid of the current segmentation as the seed point. The propagation stops when no segmentation can be found or the 
segmentations between two adjacent slices are not continuous, i.e., the overlap between two segmentations is smaller 
than a given value. Figure 7 shows the 3D segmentation of a polyp. It covers 5 transverse slices. Slice 2 is the location of 

-1 center +1 +2 +3 

Figure 7 Segmentation propagation 
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the seed point (center slice). Our technique is essentially a 2D technique. A true 3D technique using deformable surface 
is under development. 

 

3. EXPERIMENTS AND RESULTS 

 

The CT colonography data used in our experiment were obtained from 20 patients (each patient had a supine study 
and a prone study). CT scans were done on a GE Hispeed scanner. The scanning parameters were 120 KVp, 50 mAs 
(mean), field of view to fit (38-46 cm), 5 mm collimation, HQ mode, and 3 mm reconstruction interval. The data size 
was 512*512*N, where N is the number of transverse slices, which is around 300. Based on colonoscopic examination 
and CT colonography of the same patient, 65 polyps were identified. 

First, We extracted the colon surface from the CT colonography. We then applied a filter to every vertex on the 
surface based on its geometric and volumetric attributes. The output of the filter is a set of seed points. Among the seed 
points, some are true positive detections, some are false positive detections. The filter on our data set generated 105 true 
positive detections (with multiple detections of the same polyp). For each true positive detection, we applied the 
automatic segmentation method to obtain the polyp boundaries. The segmentation method was robust enough to segment 
all true positive detections. The results in figure 6-8 show that the segmentation visually matches the polyp boundary. In 
order to quantitatively validate the accuracy of our segmentation method, we manually painted all true positive 
detections and stored the painting in a database. The polyp painting was carefully performed by a trained student and 
verified by an experienced radiologist. The manual painting was used as the ground-truth segmentation in our study. 
Figure 8 shows several manual paintings together with automatic segmentation. The blue (dark) contours are the manual 
painting and the yellow (bright) contours are the automatic segmentations. We validate the accuracy of the automatic 
segmentation results by computing the overlap between the manual painting and the automatic segmentation. The 
overlap is computed as  
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here cs is the automatic segmentation, and cp is the manual painting, • represent the number of voxels in a 

segmentation. Among all 105 true positive detections, the average overlap was 76.3%, the standard deviation was 
21.7%, the minimum overlap was 34.4%, and the maximum overlap was 95.5%. From the observation in Figure 8, we 
notice that 80% overlap is relatively good considering the small size of the colonic polyps.  

 

 

 

Figure 8 Comparison of manual painting and automatic segmentation 

76% 79% 83% 87% 
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4. DISCUSSIONS AND FUTURE WORKS 

 

We have developed an automatic colonic polyp segmentation method for CT colonography. The technique 
combines knowledge guided intensity adjustment, fuzzy c-mean clustering, and deformable models. It uses both 
intensity properties and geometric properties of the polyp. 

We validated the automatic segmentation by comparing the automatic segmentation results with manual painting. 
This is the first use of such method in colonic polyp segmentation. The results show that the automatic segmentation 
matches well the manual segmentation. In some cases, the automatic segmentation is better since it is more consistent 
and smoother. The manual painting database can not only serve as the ground truth segmentation, it can also be used to 
separate true positives and false positives in the training phase. Furthermore, it can be used directly in the training to 
extract the common properties of true positive detections of colonic polyps. 

Colonic polyp segmentation is not an easy task due to the irregular shape of colonic polyps and the complex 
surrounding regions. We first enhance the potential polyp region using a knowledge-guided intensity adjustment process. 
The adjustment uses the knowledge of the shape of a polyp and its surrounding region. It is possible to use edge 
detection or texture analysis to locate the potential polyp region, but those methods usually are not robust enough to 
identify all kinds of polyps. Fuzzy clustering is used to group polyp pixels. An alternative method is to apply threshold 
techniques to distinguish polyp pixels after the intensity adjustment process. However, it is difficult to obtain a uniform 
threshold value that differentiates polyp and non-polyp tissues. Furthermore, the threshold technique is usually sensitive 
to image noise. Fuzzy clustering gives us the probability of one pixel belonging to polyp regions, and can also be used as 
an image force to drive a deformable model. A region growing plus mathematical morphology on the fuzzy membership 
map may also provide the polyp segmentation, but it cannot ensure a continuous and smooth boundary. Instead, 
deformable active contour models driven by fuzzy membership functions provide a consistent and smooth segmentation. 
The technique is applied on a 64*64 pixel sub-image around the seed point based on the observation that polyp detection 
is a local operation. This practice also speeds up the segmentation process and makes the fuzzy clustering less sensitive 
to other regions in the image. Currently, the segmentation takes less than 1 second to complete on a 1.8GHz Pentium IV 
PC, and there is still room to further optimize the algorithm.  

There are a few things to improve in our colonic polyp segmentation technique. Although the segmentation is 
propagated to neighboring slices to generate a 3D segmentation, the technique itself is basically 2D and currently no 
continuity and smoothness constraints are imposed between slices. 3D techniques should be explored to get better 
segmentation. The 3D techniques would include a 3D fuzzy clustering and a 3D deformable surface model, which are 
easy to extend from current 2D techniques. 3D techniques require thin between-plane slice thickness to obtain consistent 
results. The data sets we are working with have 3mm or 5mm reconstruction interval, which is not thin enough for a 
successful 3D segmentation. We can either do an inter-slice interpolation or turn to more advanced imaging protocols to 
get thinner slice data.  

The segmentation process can also be employed to directly assist polyp detection. Some polyp candidates are true 
positive detections, but most of them are false positive detections. The segmentation may fail at some seed points under 
some criteria, e.g., the aspect ratio is too big (usually fold detections), or the average intensity is too big (usually 
contrast-enhanced stools). Ideally, the segmentation should succeed at all true positive detections (100% sensitivity), and 
fail at all false positive detections (100% specificity). Since some false positive detections are very similar to true 
positive detection in CT colonography, it is very difficult to get 100% sensitivity and 100% specificity. But hopefully the 
segmentation process can retain all true positive detections (100% sensitivity), and at the same time eliminate a portion 
of false position detections. Since the entire polyp region is available after the segmentation, new volumetric and 
geometric features can be computed. These features can then be fed to Neural Network (NN) or Support Vector Machine 
(SVM) for further analysis and classification. Therefore, the segmentation process can improve the polyp detection in 
two ways: 1) provide a ‘cleaner’ training set by reducing the number of false positives; 2) provide new features for 
classification. 

We must mention that the quality of the data set we are working on is not very good. The slice interval is big (3mm-
5mm). Some colons are not inflated very well. And some colons are not very clean (stools exist). But our segmentation 
technique is robust enough to segment all the polyps in the data set. We are currently working on a much bigger data set 
to further test our segmentation technique. 
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